Подпишись и читай
самые интересные
статьи первым!

По каким спектрам проводят спектральный анализ. Спектральный метод анализа

Спектральный анализ - один из самых важных физических методов исследования веществ. Предназначен для определения качественного и количественного состава вещества на основе его спектра.

Химикам издавна было известно, что соединения некоторых химических элементов, если их внести в пламя, окрашивают его в характерные цвета. Так, соли натрия делают пламя желтым, а соединения бора - зеленым. Окраска вещества возникает, когда оно либо излучает волны определенной длины, либо поглощает их из полного спектра падающего на него белого света. Во втором случае цвет, видимый глазом, оказывается соответствующим не этим поглощенным волнам, а другим - дополнительным, дающим при сложении с ними белый свет.

Эти закономерности, установленные еще в начале прошлого века, были обобщены в 1859-1861 гг. немецкими учеными Г. Кирхгофом и Р. Бунзеном, доказавшими, что каждый химический элемент имеет свой характерный спектр. Это позволило создать разновидность элементного анализа - атомный спектральный анализ, с помощью которого можно количественно определять содержание различных элементов в навеске вещества, разлагаемого на атомы или ионы в пламени или в электрической дуге. Еще до создания количественного варианта этого метода он успешно применялся для «элементного анализа» небесных тел. Спектральный анализ уже в прошлом веке помог исследовать состав Солнца и других звезд, а также открыть некоторые элементы, в частности гелий.

При помощи спектрального анализа стало возможным отличать не только различные химические элементы, но и изотопы одного и того же элемента, обычно дающие неодинаковые спектры. Метод применяется для анализа изотопного состава веществ и основан на различном смещении энергетических уровней молекул с различными изотопами.

Рентгеновские лучи, названные по имени открывшего их в 1895 г. немецкого физика В. Рентгена,- одна из самых коротковолновых частей полного спектра электромагнитных волн, расположенная в нем между ультрафиолетовым светом и гамма-излуче-нием. При поглощении рентгеновских лучей атомами возбуждаются глубинные электроны, расположенные вблизи ядра и связанные с ним особенно прочно. Испускание атомами рентгеновских лучей, наоборот, связано с переходами глубинных электронов с возбужденных энергетических уровней на обычные, стационарные.

И те и другие уровни могут обладать только строго определенными энергиями, зависящими от заряда атомного ядра. Значит, разность этих энергий, равная энергии поглощаемого (или излучаемого) кванта, тоже зависит от заряда ядра, и излучение каждого химического элемента в рентгеновской области спектра представляет собой характерный для данного элемента набор волн со строго определенными частотами колебаний.

На использовании этого явления и основан рентгеноспектральный анализ - разновидность элементного анализа. Он широко применяется для анализа руд, минералов, а также сложных неорганических и элементоорганических соединений.

Существуют и другие виды спектроскопии, основанные не на излучении, а на поглощении веществом световых волн. Так называемые молекулярные спектры наблюдаются, как правило, при поглощении растворами веществ видимого, ультрафиолетового или инфракрасного света; разложения молекул при этом не происходит. Если видимый или ультрафиолетовый свет обычно действует на электроны, заставляя их подниматься на новые, возбужденные энергетические уровни (см. Атом), то инфракрасные (тепловые) лучи, несущие меньше энергии, возбуждают лишь колебания связанных между собой атомов. Поэтому информация, которую такие виды спектроскопии дают химикам, различна. Если из инфракрасного (колебательного) спектра узнают о наличии в веществе определенных групп атомов, то спектры в ультрафиолетовой (а для окрашенных веществ - ив видимой) области несут информацию о строении поглощающей свет группировки в целом.

Среди органических соединений основу таких группировок, как правило, составляет система ненасыщенных связей (см. Ненасыщенные углеводороды). Чем больше в молекуле двойных или тройных связей, чередующихся с простыми (иными словами, чем длиннее цепь сопряжения), тем легче возбуждаются электроны.

Методы молекулярной спектроскопии используют не только для определения строения молекул, но и для точного измерения количества известного вещества в растворе. Особенно удобны для этого спектры в ультрафиолетовой или видимой области. Полосы поглощения в этой области обычно наблюдаются при концентрации растворенного вещества порядка сотых и даже тысячных долей процента. Частным случаем такого применения спектроскопии является метод колориметрии, широко применяемый для измерения концентрации окрашенных соединений.

Атомы некоторых веществ способны поглощать также и радиоволны. Такая способность проявляется при помещении вещества в поле мощного постоянного магнита. Многие атомные ядра обладают собственным магнитным моментом - спином, и в магнитном поле ядра с неодинаковой ориентацией спина оказываются энергетически «неравноправными». Те, у которых направление спина совпадает с направлением наложенного магнитного поля, попадают в более выгодное положение, а другие ориентации начинают играть по отношению к ним роль «возбужденных состояний». Это не значит, что ядро, находящееся в выгодном спиновом состоянии, не может перейти в/«возбужденное»; разница энергий спиновых состояний очень невелика, но все же процент ядер, находящихся в невыгодном энергетическом состоянии, сравнительно мал. И он тем меньше, чем мощнее наложенное поле. Ядра как бы колеблются между двумя энергетическими состояниями. А поскольку частота таких колебаний соответствует частоте радиоволн, то возможен и резонанс - поглощение энергии переменного электромагнитного поля с соответствующей частотой, приводящее к резкому увеличению числа ядер, находящихся в возбужденном состоянии.

На этом и основана работа спектрометров ядерного магнитного резонанса (ЯМР), способных обнаруживать наличие в веществе тех атомных ядер, спин которых равен 1/2: водорода 1Н, лития 7Li, фтора 19F, фосфора 31Р, а также изотопов углерода 13С, азота 15N, кислорода 17O и т. д.

Чувствительность таких приборов тем выше, чем мощнее постоянный магнит. Пропорционально напряженности магнитного поля растет и резонансная частота, нужная для возбуждения ядер. Она служит мерой класса прибора. Спектрометры среднего класса работают на частоте 60-90 МГц (при записи протонных спектров); более классные - на частоте 180, 360 и даже 600 МГц.

Спектрометры высокого класса - очень точные и сложные приборы - позволяют не только обнаружить и количественно измерить содержание того или иного элемента, но и различить сигналы атомов, занимающих в молекуле химически «неравноправные» положения. А изучив так называемое спин-спиновое взаимодействие, приводящее к расщеплению сигналов на группы узких линий под влиянием магнитного поля соседних ядер, можно узнать много интересного об атомах, окружающих исследуемое ядро. ЯМР-спектроскопия позволяет получить от 70 до 100% информации, нужной, например, для того, чтобы установить строение сложного органического соединения.

Еще одна разновидность радиоспектроскопии - электронный парамагнитный резонанс (ЭПР) - основана на том, что спином, равным 1/2, обладают не только ядра, но и электроны. Спектроскопия ЭПР - лучший способ исследования частиц, обладающих неспаренными электронами,- свободных радикалов. Подобно спектрам ЯМР, спектры ЭПР дают возможность многое узнать не только о самой «сигналящей» частице, но и о природе окружающих ее атомов. Приборы спектроскопии ЭПР очень чувствительны: для записи спектра обычно бывает вполне достаточно раствора, содержащего несколько стомиллионных долей моля свободных радикалов на 1 л. А прибор с рекордной чувствительностью, недавно созданный группой советских ученых, способен зафиксировать наличие в образце всего 100 радикалов, что соответствует их концентрации примерно 10 -18 моль/л.

В семнадцатом веке, обозначающее совокупность всех значений какой-либо физической величины. Энергии, массы, оптического излучения. Именно последнее зачастую имеется в виду, когда мы говорим о спектре света. Конкретно спектр света представляет собой совокупность полос оптического излучения разной частоты, часть из которых мы можем видеть повседневно в окружающем мире, часть же их недоступна для невооруженного глаза. В зависимости от возможности восприятия человеческим глазом, спектр света разделяют на видимую часть и невидимую. Последнюю, в свою очередь, - на инфракрасный и ультрафиолетовый свет.

Виды спектров

Существуют также разные виды спектров. Таких выделяют три, в зависимости от спектральной плотности интенсивности излучения. Спектры могут быть непрерывные, линейчатые и полосатые. Виды спектров определяют с помощью

Непрерывный спектр

Непрерывный спектр образуется нагретыми до высокой температуры твердыми телами или газами высокой плотности. Всем известная радуга семи цветов является прямым примером непрерывного спектра.

Линейчатый спектр

Также представляет виды спектров и исходит от любого вещества, находящегося в газообразном атомарном состоянии. Здесь важно отметить, что именно в атомарном, а не молекулярном. Такой спектр обеспечивает крайне низкое взаимодействие атомов друг с другом. Поскольку взаимодействия нет, атомы излучают волны перманентно одинаковой длины. Примером такого спектра является свечение газов, нагретых до высокой температуры.

Полосатый спектр

Полосатый спектр визуально представляет собой отдельные полосы, четко разграниченные достаточно темными промежутками. При этом каждая из этих полос не является излучением строго определенной частоты, а состоит из большого количества близко расположенных друг к другу световых линий. Примером таких спектров, как и в случае с линейчатым, является свечение паров при высокой температуре. Однако они создаются уже не атомами, а имеющими крайне тесную общую связь молекулами, что и обуславливает подобное свечение.

Спектр поглощения

Однако на этом виды спектров все-таки не заканчиваются. Дополнительно выделяют еще такой вид, как спектр поглощения. При спектральном анализе спектр поглощения - это темные линии на фоне непрерывного спектра и, по существу, спектр поглощения - это выражение зависимости от показателя поглощения вещества, который может быть более или менее высоким.

Хотя существует широкий диапазон экспериментальных подходов к измерению спектров поглощения. Наиболее распространенным является эксперимент, когда генерируемый пучок излучения пропускается через охлажденный (для отсутствия взаимодействия частиц и, следовательно, свечения) газ, после чего определяется интенсивность излучения, проходящего через него. Переданная энергия вполне может быть использована для вычисления поглощения.

Со дня открытия «спектрального анализа» вокруг этого термина велось много споров. Сначала физический принцип спектрального анализа подразумевал метод идентификации элементарного состава пробы по наблюдаемому спектру, который возбуждался в каком-нибудь высокотемпературном источнике пламени, искре или дуге.

В дальнейшем под спектральным анализом стали понимать другие методы аналитического изучения и возбуждения спектров:

  • методы комбинационного рассеяния,
  • методы поглощения и люминесценции.

В конце концов, были открыты рентгеновские и гамма спектры. Поэтому правильно, говоря о спектральном анализе, подразумевать совокупность всех существующих методов. Однако чаще явление идентификации по спектрам используют, понимая эмиссионные методы.

Способы классификации

Еще один вариант классификации – это разделение на молекулярные (определение молекулярного состава пробы) и элементарные (определение атомарного состава) исследования спектров.

Молекулярный метод основан на изучении спектров поглощения, комбинационного рассеяния и люминесценции; атомарный состав определяется по спектрам возбуждения в горячих источниках (молекулы в основном разрушаются) либо по данным рентгеноспектральных исследований. Но такая классификация не может быть строгой, потому что иногда оба эти метода совпадают.

Классификация методов спектрального анализа

Отталкиваясь от задач, которые решаются вышеописанными методами, изучение по спектрам делят на методы, применяемые для исследования сплавов, газов, руд и минералов, готовых изделий, чистых металлов и т.д. Каждый изучаемый объект обладает своими характерными особенностями и стандартами. Два основных направления анализа спектров:

  1. Качественный
  2. Количественный

Что изучается при их проведении, рассмотрим далее.

Диаграмма методов спектрального анализа

Качественный спектральный анализ

Качественный анализ служит для того, чтобы определить из каких элементов состоит анализируемый образец. Необходимо получить спектр пробы, возбужденный в каком-либо источнике, и по обнаруженным спектральным линиям определить каким элементам они принадлежат. Так станет понятно, из чего состоит образец. Сложность качественного анализа – это большое количество спектральных линий на аналитической спектрограмме, расшифровка и идентификация которых слишком трудоемка и не точна.

Количественный спектральный анализ

Метод количественного спектрального анализа основан на том, что интенсивность аналитической линии увеличивается с возрастанием содержания определяемого элемента в пробе. Эта зависимость строится на основе множества факторов, которые сложно численно рассчитать. Поэтому теоретически установить связь между интенсивностью линии и концентрацией элемента практически невозможно.

Поэтому проводятся относительные измерения интенсивностей одной и той же спектральной линии при изменении концентрации определяемого элемента. Так, при неизменности условий возбуждения и регистрации спектров, измеряемая энергия излучения пропорциональна интенсивности. Измерение этой энергии (либо зависящей от нее величины) дает нужную нам эмпирическую связь между измеряемой величиной и концентрацией элемента в пробе.


Спектральный анализ , метод качественного и количественного определения состава веществ, основанный на исследовании их спектров испускания, поглощения, отражения и люминесценции. Различают атомный и молекулярный спектральный анализ , задачи которых состоят в определении соответственно элементного и молекулярного состава вещества. Эмиссионный спектральный анализ проводят по спектрам испускания атомов, ионов или молекул, возбужденных различными способами, абсорбционный спектральный анализ - по спектрам поглощения электромагнитного излучения анализируемыми объектами (см. Абсорбционная спектроскопия ). В зависимости от цели исследования, свойств анализируемого вещества, специфики используемых спектров, области длин волн и других факторов ход анализа, аппаратура, способы измерения спектров и метрологические характеристики результатов сильно различаются. В соответствии с этим спектральный анализ подразделяют на ряд самостоятельных методов (см., в частности, спектроскопия отражения , ультрафиолетовая спектроскопия, ).

Часто под спектральным анализом понимают только атомно-эмиссионный спектральный анализ (АЭСА) - метод элементного анализа, основанный на изучении спектров испускания свободных атомов и ионов в газовой фазе в области длин волн 150-800 нм (см. ).

Пробу исследуемого вещества вводят в источник излучения, где происходят ее испарение, диссоциация молекул и возбуждение образовавшихся атомов (ионов). Последние испускают характеристическое излучение, которое поступает в регистрирующее устройство спектрального прибора.

При качественном спектральном анализе спектры проб сравнивают со спектрами известных элементов, приведенных в соответствующих атласах и таблицах спектральных линий, и таким образом устанавливают элементный состав анализируемого вещества. При количественном анализе определяют количество (концентрацию) искомого элемента в анализируемом веществе по зависимости величины аналитического сигнала (плотность почернения или оптическая плотность аналитической линии на фотопластинке; световой поток на фотоэлектрический приемник) искомого элемента от его содержания в пробе. Эта зависимость сложным образом определяется многими трудно контролируемыми факторами (валовый состав проб, их структура, дисперсность, параметры источника возбуждения спектров, нестабильность регистрирующих устройств, свойства фотопластинок и т.д.). Поэтому, как правило, для ее установления используют набор образцов для градуировки, которые по валовому составу и структуре возможно более близки к анализируемому веществу и содержат известные количества определяемых элементов. Такими образцами могут служить специально приготовленные металлич. сплавы, смеси веществ, растворы, в т.ч. и , выпускаемые промышленностью. Для устранения влияния на результаты анализа неизбежного различия свойств анализируемого и стандартных образцов используют разные приемы; например, сравнивают спектральные линии определяемого элемента и так называемого элемента сравнения, близкого по химическим и физическим свойствам к определяемому. При анализе однотипных материалов можно применять одни и те же градуировочные зависимости, которые периодически корректируют по поверочным образцам.

Чувствительность и точность спектрального анализа зависят главным образом от физических характеристик источников излучения (возбуждения спектров) - температуры, концентрации электронов, времени пребывания атомов в зоне возбуждения спектров, стабильности режима источника и т.д. Для решения конкретной аналитической задачи необходимо выбрать подходящий источник излучения, добиться оптимизации его характеристик с помощью различных приемов - использование инертной атмосферы, наложение магнитного поля, введение специальных веществ, стабилизирующих температуру разряда, степень ионизации атомов, диффузионные процессы на оптимальном уровне и т.д. Ввиду многообразия взаимовлияющих факторов при этом часто используют методы математического планирования экспериментов.

При анализе твердых веществ наиболее часто применяют дуговые (постоянного и переменного тока) и искровые разряды, питаемые от специально сконструированных стабилизирующих генераторов (часто с электронным управлением). Созданы также универсальные генераторы, с помощью которых получают разряды разных типов с переменными параметрами, влияющими на эффективность процессов возбуждения исследуемых образцов. Твердая электропроводящая проба непосредственно может служить электродом дуги или искры; не проводящие ток твердые пробы и порошки помещают в углубления угольных электродов той или иной конфигурации. В этом случае осуществляют как полное испарение (распыление) анализируемого вещества, так и фракционное испарение последнего и возбуждение компонентов пробы в соответствии с их физическими и химическими свойствами, что позволяет повысить чувствительность и точность анализа. Для усиления эффекта фракционирования испарения широко применяют добавки к анализируемому веществу реагентов, способствующих образованию в условиях высокотемпературной [(5-7)·10 3 К] угольной дуги легколетучих соединений (фторидов, хлоридов, сульфидов и др.) определяемых элементов. Для анализа геологических проб в виде порошков широко применяют способ просыпки или вдувания проб в зону разряда угольной дуги.

При анализе металлургических проб наряду с искровыми разрядами разных типов используют также источники света тлеющего разряда (лампы Грима, разряд в полом катоде). Разработаны комбинированные автоматизированные источники, в которых для испарения или распыления используют лампы тлеющего разряда или электротермические анализаторы, а для получения спектров, например, - высокочастотные плазматроны. При этом удается оптимизировать условия испарения и возбуждения определяемых элементов.

При анализе жидких проб (растворов) наилучшие результаты получаются при использовании высокочастотных (ВЧ) и сверхвысокочастотных (СВЧ) плазматронов, работающих в инертной атмосфере, а также при пламенно-фотометрическом анализе (см. ). Для стабилизации температуры плазмы разряда на оптимальном уровне вводят добавки легкоионизируемых веществ, например щелочных металлов. Особенно успешно применяют ВЧ разряд с индуктивной связью тороидальной конфигурации (рис. 1). В нем разделены зоны поглощения ВЧ энергии и возбуждения спектров, что позволяет резко повысить эффективность возбуждения и отношение полезного аналитического сигнала к шуму и, таким образом, достичь очень низких пределов обнаружения широкого круга элементов. В зону возбуждения пробы вводят с помощью пневматических или (реже) ультразвуковых распылителей. При анализе с применением ВЧ и СВЧ плазматронов и фотометрии пламени относительное стандартное отклонение составляет 0,01-0,03, что в ряде случаев позволяет применять спектральный анализ вместо точных, но более трудоемких и длительных химических методов анализа.

Для анализа газовых смесей необходимы специальные вакуумные установки; спектры возбуждают с помощью ВЧ и СВЧ разрядов. В связи с развитием газовой хроматографии эти методы применяют редко.

Рис. 1. ВЧ-плазматрон: 1-факел отходящих газов; 2-зона возбуждения спектров; 3-зона поглощения ВЧ энергии; 4-нагревательный индуктор; 5-вход охлаждающего газа (азот, аргон); 6-вход плазмообразующего газа (аргон); 7-вход распыленной пробы (несущий газ - аргон).

При анализе веществ высокой чистоты, когда требуется определять элементы, содержание которых меньше 10 -5 %, а также при анализе токсичных и радиоактивных веществ пробы предварительно обрабатывают; например, частично или полностью отделяют определяемые элементы от основы и переводят их в меньший объем раствора или вносят в меньшую массу более удобного для анализа вещества. Для разделения компонентов пробы применяют фракционную отгонку основы (реже-примесей), адсорбцию, осаждение, экстракцию, хроматографию, ионный обмен. Спектральный анализ с использованием перечисленных химических способов концентрирования пробы, как правило, называют химико-спектральным анализом. Дополнительные операции разделения и концентрирования определяемых элементов заметно повышают трудоемкость и длительность анализа и ухудшают его точность (относительное стандартное отклонение достигает значений 0,2-0,3), но снижает пределы обнаружения в 10-100 раз.

Специфической областью спектрального анализа является микроспектральный (локальный) анализ. При этом микрообъем вещества (глубина кратера от десятков мкм до нескольких мкм) испаряют обычно лазерным импульсом, действующим на участок поверхности образца диаметром несколько десятков мкм. Для возбуждения спектров используют чаще всего импульсный искровой разряд, синхронизованный с лазерным импульсом. Метод применяют при исследовании минералов, в металловедении.

Спектры регистрируют с помощью спектрографов и спектрометров (квантометров). Имеется много типов этих приборов, различающихся светосилой, дисперсией, разрешающей способностью, рабочей областью спектра. Большая светосила необходима для регистрации слабых излучений, большая дисперсия - для разделения спектральных линий с близкими длинами волн при анализе веществ с многолинейчатыми спектрами, а также для повышения чувствительности анализа. В качестве устройств, диспергирующих свет, используют дифракционные решетки (плоские, вогнутые, нарезные, голографические, профилированные), имеющие от нескольких сотен до нескольких тысяч штрихов на миллиметр, значительно реже - кварцевые или стеклянные призмы.

Спектрографы (рис. 2), регистрирующие спектры на специальных фотопластинках или (реже) на фотопленках, предпочтительнее при качественном спектральном анализе, т.к. позволяют изучать сразу весь спектр образца (в рабочей области прибора); однако используются и для количественного анализа вследствие сравнительной дешевизны, доступности и простоты обслуживания. Почернения спектральных линий на фотопластинках измеряют с помощью микрофотометров (микроденситометров). Использование при этом ЭВМ или микропроцессоров обеспечивает автоматический режим измерений, обработку их результатов и выдачу конечных результатов анализа.


Рис.2. Оптическая схема спектрографа: 1-входная щель; 2-поворотное зеркало; 3-сферическое зеркало; 4-дифракционная решетка; 5-лампочка освещения шкалы; 6-шкала; 7-фотопластинка.


Рис. 3. Схема квантометра (из 40 каналов регистрации показано только три): 1-полихроматор; 2-дифракционные решетки; 3-выходные щели; 4-фото-электронный умножитель; 5-входные щели; 6-штативы с источниками света; 7-генераторы искрового и дугового разрядов; 8-электронно-регистрирующее устройство; 9-управляющий вычислительный комплекс.

В спектрометрах осуществляется фотоэлектрическая регистрация аналитических сигналов с помощью фотоэлектронных умножителей (ФЭУ) с автоматической обработкой данных на ЭВМ. Фотоэлектрические многоканальные (до 40 каналов и более) полихроматоры в квантометрах (рис. 3) позволяют одновременно регистрировать аналитические линии всех предусмотренных программой определяемых элементов. При использовании сканирующих монохроматоров многоэлементный анализ обеспечивается высокой скоростью сканирования по спектру в соответствии с заданной программой.

Для определения элементов (С, S, P, As и др.), наиболее интенсивные аналитические линии которых расположены в УФ области спектра при длинах волн меньше 180-200 нм, применяют вакуумные спектрометры.

При использовании квантометров длительность анализа определяется в значительной мере процедурами подготовки исходного вещества к анализу. Существенное сокращение времени пробоподготовки достигается автоматизацией наиболее длительных этапов - растворения, приведения растворов к стандартному составу, окисления металлов, растирания и смешения порошков, отбора проб заданной массы. Во многих случаях многоэлементный спектральный анализ выполняется в течение нескольких минут, например: при анализе растворов с использованием автоматизированных фотоэлектрических спектрометров с ВЧ плазматронами или при анализе металлов в процессе плавки с автоматической подачей проб в источник излучения.

Применение спектрального анализа

Методом, дающим ценные и наиболее разнообразные сведения о небесных светилах, является спектральный анализ. Он позволяет установить из анализа света качественный и количественный химический состав светила, его температуру, наличие и напряженность магнитного поля, скорость движения по лучу зрения и многое другое.

Спектральный анализ основан на разложении белого света на составные части. Если пучок света пустить на боковую грань трехгранной призмы, то, преломляясь в стекле по-разному, составляющие белый свет лучи дадут на экране радужную полоску, называемую спектром. В спектре все цвета расположены всегда в определенном порядке.

Как известно, свет распространяется в виде электромагнитных волн. Каждому цвету соответствует определенная длина электромагнитной волны. Длина волны в спектре уменьшается от красных лучей к фиолетовым примерно от 0,7 до 0,4 мкм. За фиолетовыми лучами спектра лежат ультрафиолетовые лучи, невидимые глазом, но действующие на фотопластинку. Еще более короткую длину волны имеют рентгеновские лучи. Рентгеновское излучение небесных светил, важное для понимания их природы, атмосфера Земли задерживает.

За красными лучами спектра находится область инфракрасных лучей. Они невидимы, но и они действуют на специальные фотопластинки. Под спектральными наблюдениями понимают обычно наблюдения в интервале от инфракрасных до ультрафиолетовых лучей.

Для изучения спектров применяют приборы, называемые спектроскопом и спектрографом. В спектроскоп спектр рассматривают, а спектрографом его фотографируют. Фотография спектра называется спектрограммой.

Существуют следующие виды спектров:

Сплошной или непрерывный, спектр в виде радужной полоски дают твердые и жидкие раскаленные тела (уголь, нить электролампы) и достаточно плотные массы газа.

Линейчатый спектр излучения дают разреженные газы и пары при сильном нагревании или под действием электромагнитного разряда. Каждый газ излучает строго определенный набор длин волн и дает характерный для данного химического элемента линейчатый спектр. Сильные изменения состояния газа или условий его свечения, например нагрев или ионизация, вызывают определенные изменения в спектре данного газа.

Составлены таблицы с перечнем линий каждого газа и с указанием яркости каждой линии. Например, в спектре натрия особенно ярки две желтые линии.

Установлено, что спектр атома или молекулы связан с их строением и отражает определенные изменения, происходящие в них в процессе свечения.

Линейчатый спектр поглощения дают газы и пары, когда за ними находится ярки и более горячий источник дающий непрерывный спектр. Спектр поглощения представляет собой непрерывный спектр, перерезанный темными линиями, которые находятся в тех самых местах, где должны быть расположены яркие линии, присущие данному газу.

Излучение спектров позволяет производить анализ химического состава газов, излучающих свет или поглощающих его, независимо от того, находятся ли они в лаборатории или на небесном светиле. Количество атомов или молекул, лежащих на нашем луче зрения, излучающих или поглощающих, определяется по интенсивности линий. Чем больше атомов, тем ярче линия или тем она темнее в спектре поглощения. Солнце и звезды окружены газовыми атмосферными линиями поглощения, возникающими при прохождении света через атмосферу звезд. Поэтому спектры Солнца и звезд - это спектры поглощения.

Нужно помнить, что спектральный анализ позволяет определять химический состав только самосветящихся или поглощающих излучение газов. Химический состав твердого тела при помощи спектрального анализа определить нельзя.

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса