Подпишись и читай
самые интересные
статьи первым!

Открытие х лучей. Характеристики рентгеновского излучения

ЛЕКЦИЯ

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ

    Природа рентгеновского излучения

    Тормозное рентгеновское излучение, его спектральные свойства.

    Характеристическое рентгеновское излучение (для ознакомления).

    Взаимодействие рентгеновского излучения с веществом.

    Физические основы использования рентгеновского излучения в медицине.

Рентгеновское излучение (X – лучи) открыты К. Рентгеном который в 1895 г. стал первым Нобелевским лауреатом по физике.

    Природа рентгеновского излучения

Рентгеновское излучение электромагнитные волны с длинной от 80 до 10 –5 нм. Длинноволновое рентгеновское излучение перекрывается коротковолновым УФ излучением, коротковолновое – длинноволновым-излучением.

Рентгеновское излучение получают в рентгеновских трубках. рис.1.

К – катод

1 – пучок электронов

2 –рентгеновское излучение

Рис. 1. Устройство рентгеновской трубки.

Трубка представляет собой стеклянную колбу (с возможно высоким вакуумом: давление в ней порядка 10 –6 мм.рт.ст.) с двумя электродами: анодом А и катодом К, к которым приложено высокое напряжение U (несколько тысяч вольт). Катод является источником электронов (за счет явления термоэлектронной эмиссии). Анод – металлический стержень, имеет наклонную поверхность для того, чтобы направлять возникающее рентгеновское излучение под углом к оси трубки. Он изготовляется из хорошо теплопроводящего материала для отвода теплоты, образующейся при бомбардировке электронов. На скошенном торце имеется пластинка из тугоплавкого металла (например, вольфрама).

Сильный разогрев анода обусловлен тем, что основное количество электронов в катодном пучке, попав на анод, испытывает многочисленные столкновения с атомами вещества и передает им большую энергию.

Под действием высокого напряжения электроны, испущенные раскаленной нитью катода, ускоряются до больших энергий. Кинетическая энергия электрона равна mv 2 /2. Она равна энергии, которую он приобретает, двигаясь в электростатическом поле трубки:

mv 2 /2 = eU (1)

где m, e – масса и заряд электрона, U – ускоряющее напряжение.

Процессы приводящие к возникновению тормозного рентгеновского излучения обусловлены интенсивным торможением электронов в веществе анода электростатическим полем атомного ядра и атомарных электронов.

Механизм возникновения можно представить следующим образом. Движущиеся электроны – это некоторый ток, образующий свое магнитное поле. Замедление электронов – снижение силы тока и, соответственно, изменение индукции магнитного поля, которое вызовет возникновение переменного электрического поля, т.е. появление электромагнитной волны.

Таким образом, когда заряженная частица влетает в вещество, она тормозится, теряет свою энергию и скорость и излучает электромагнитные волны.

    Спектральные свойства тормозного рентгеновского излучения .

Итак, в случае торможения электрона в веществе анода возникает тормозное рентгеновское излучение.

Спектр тормозного рентгеновского излучения является сплошным . Причина этого в следующем.

При торможении электронов у каждого из них часть энергии идет на нагрев анода (Е 1 = Q), другая часть на создание фотона рентгеновского излучения (Е 2 = hv), иначе, eU = hv + Q. Соотношение между этими частями случайное.

Таким образом, непрерывный спектр тормозного рентгеновского излучения образуется благодаря торможению множества электронов, каждый из которых испускает один квант рентгеновского излучения hv (h) строго определенной величины. Величина этого кванта различна для разных электронов. Зависимость потока энергии рентгеновского излучения от длины волны , т.е. спектр рентгеновского излучения представлен на рис.2.

Рис.2. Спектр тормозного рентгеновского излучения: а) при различном напряжении U в трубке; б) при различной температуре Т катода.

Коротковолновое (жесткое) излучение обладает большей проникающей способностью, чем длинноволновое (мягкое). Мягкое излучение сильнее поглощается веществом.

Со стороны коротких длин волн спектр резко обрывается на определенной длине волны  m i n . Такое коротковолновое тормозное излучение возникает тогда, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона (Q = 0):

eU = hv max = hc/ min ,  min = hc/(eU), (2)

 min (нм) = 1,23/UкВ

Спектральный состав излучения зависит от величины напряжения на рентгеновской трубке, с увеличением напряжения значение  m i n смещается в сторону коротких длин волн (рис. 2a).

При изменении температуры Т накала катода возрастает эмиссия электронов. Следовательно, увеличивается ток I в трубке, но спектральный состав излучения не изменяется (рис. 2б).

Поток энергии Ф  тормозного излучения прямо пропорционален квадрату напряжения U между анодом и катодом, силе тока I в трубке и атомному номеру Z вещества анода:

Ф = kZU 2 I. (3)

где k = 10 –9 Вт/(В 2 А).

    Характеристическое рентгеновское излучение (для ознакомления).

Увеличение напряжения на рентгеновской трубке приводит к тому, что на фоне сплошного спектра появляется линейчатый, который соответствует характеристическому рентгеновскому излучению. Это излучение специфично для материала анода.

Механизм его возникновения таков. При большом напряжении ускоренные электроны (с большой энергией) проникают в глубь атома и выбивают из его внутренних слоев электроны. На свободные места переходят электроны с верхних уровней, в результате чего высвечиваются фотоны характеристического излучения.

Спектры характеристического рентгеновского излучения отличаются от оптических спектров.

– Однотипность.

Однотипность характеристических спектров обусловлена тем, что внутренние электронные слои у разных атомов одинаковы и отличаются только энергетически из–за силового воздействия со стороны ядер, которое увеличивается с возрастанием порядкового номера элемента. Поэтому характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Опытно это было подтверждено сотрудником Рентгена – Мозли , который измерил частоты рентгеновских переходов для 33 элементов. Им был установлен закон.

ЗАКОН МОЗЛИ корень квадратный из частоты характеристического излучения есть линейная функция порядкового номера элемента:

= A  (Z – В), (4)

где v – частота спектральной линии, Z – атомный номер испускающего элемента. А, В – константы.

Важность закона Мозли заключается в том, что по этой зависимости можно по измеренной частоте рентгеновской линии точно узнать атомный номер исследуемого элемента. Это сыграло большую роль в размещении элементов в периодической системе.

    Независимость от химического соединения.

Характеристические рентгеновские спектры атома не зависят от химического соединения, в которое входит атом элемента. Например, рентгеновский спектр атома кислорода одинаков для О 2, Н 2 О, в то время как оптические спектры этих соединений отличаются. Эта особенность рентгеновского спектра атома послужила основанием для названия "характеристическое излучение ".

    Взаимодействие рентгеновского излучения с веществом

Воздействие рентгеновского излучения на объекты определяется первичными процессами взаимодействия рентгеновского фотона с электронами атомов и молекул вещества.

Рентгеновское излучение в веществе поглощается или рассеивается . При этом могут происходить различные процессы, которые определяются соотношением энергии рентгеновского фотона hv и энергии ионизации А и (энергия ионизации А и – энергия, необходимая для удаления внутренних электронов за пределы атома или молекулы).

а) Когерентное рассеяние (рассеяние длинноволнового излучения) происходит тогда, когда выполняется соотношение

У фотонов вследствие взаимодействия с электронами изменяется только направление движения (рис.3а), но энергия hv и длина волны не меняются (поэтому это рассеяние называется когерентным ). Так как энергия фотона и атома не изменяются, то когерентное рассеяние не влияет на биологические объекты, но при создании защиты от рентгеновского излучения следует учитывать возможность изменения первичного направления пучка.

б) Фотоэффект происходит тогда, когда

При этом могут быть реализованы два случая.

    Фотон поглощается, электрон отрывается от атома (рис. 3б). Происходит ионизация. Оторвавшийся электрон приобретает кинетическую энергию: E к = hv – A и. Если кинетическая энергия велика, то электрон может ионизировать соседние атомы путем соударения, образуя новые вторичные электроны.

    Фотон поглощается, но его энергии не достаточно для отрыва электрона, и может происходить возбуждение атома или молекулы (рис.3в). Это часто приводит к последующему излучению фотона в области видимого излучения (рентгенолюминесценция), а в тканях – к активации молекул и фотохимическим реакциям. Фотоэффект происходит, в основном, на электронах внутренних оболочек атомов с высоким Z.

в) Некогерентное рассеяние (эффект Комптона, 1922 г.) происходит тогда, когда энергия фотона намного больше энергии ионизации

При этом электрон отрывается от атома (такие электроны называются электронами отдачи ), приобретает некоторую кинетическую энергию E к, энергия самого фотона уменьшается (рис. 4г):

hv = hv" + А и + Е к. (5)

Образующееся таким образом излучение с измененной частотой (длиной) называется вторичным , оно рассеивается по всем направлениям.

Электроны отдачи, если они имеют достаточную кинетическую энергию, могут ионизировать соседние атомы путем соударения. Таким образом, в результате некогерентного рассеяния образуется вторичное рассеянное рентгеновское излучение и происходит ионизация атомов вещества.

Указанные (а,б,в) процессы могут вызвать рад последующих. Например (рис. 3д), если при фотоэффекте происходит отрыв от атома электронов на внутренних оболочках, то на их место могут переходить электроны с более высоких уровней, что сопровождается вторичным характеристическим рентгеновским излучением данного вещества. Фотоны вторичного излучения, взаимодействуя с электронами соседних атомов, могут, в свою очередь, вызывать вторичные явления.

когерентное рассеяние

энергия и длина волны остаются неизменными

фотоэффект

фотон поглощается, е – отрывается от атома – ионизация

hv = А и + Е к

атом А возбуждается при поглощении фотона, R – рентгенолюминесценция

некогерентное рассеяние

hv = hv"+А и +Е к

вторичные процессы при фотоэффекте

Рис. 3 Механизмы взаимодействие рентгеновского излучения с веществом

Физические основы использования рентгеновского излучения в медицине

При падении рентгеновского излучения на тело оно незначительно отражается от его поверхности, а в основном проходит вглубь, при этом частично поглощается и рассеивается, частично проходит насквозь.

Закон ослабления.

Поток рентгеновского излучения ослабляется в веществе по закону:

Ф = Ф 0 е –   х (6)

где  – линейный коэффициент ослабления, который существенно зависит от плотности вещества. Он равен сумме трех слагаемых, соответствующих когерентному рассеянию  1, некогерентному  2 и фотоэффекту  3:

 =  1 +  2 +  3 . (7)

Вклад каждого слагаемого определяется энергией фотона. Ниже приведены соотношения этих процессов для мягких тканей (воды).

Энергия, кэВ

Фотоэффект

Комптон - эффект

Пользуются массовым коэффициентом ослабления, который не зависит от плотности вещества :

 m = /. (8)

Массовый коэффициент ослабления зависит от энергии фотона и от атомного номера вещества – поглотителя:

 m = k 3 Z 3 . (9)

Массовые коэффициенты ослабления кости и мягкой ткани (воды) отличаются:  m кости / m воды = 68.

Если на пути рентгеновских лучей поместить неоднородное тело и перед ним поставить флуоресцирующий экран, то это тело, поглощая и ослабляя излучение, образует на экране тень. По характеру этой тени можно судить о форме, плотности, структуре, а во многих случаях и о природе тел. Т.е. существенное различие поглощения рентгеновского излучения разными тканями позволяет в теневой проекции видеть изображение внутренних органов.

Если исследуемый орган и окружающие ткани одинаково ослабляют рентгеновское излучение, то применяют контрастные вещества. Так, например, наполнив желудок и кишечник кашеобразной массой сульфата бария (BaS0 4), можно видеть их теневое изображение (соотношение коэффициентов ослабления равно 354).

Использование в медицине.

В медицине используется рентгеновское излучение с энергией фотонов от 60 до 100-120 кэВ при диагностике и 150-200 кэВ при терапии.

Рентгенодиагностика распознавание заболеваний при помощи просвечивания тела рентгеновским излучением.

Рентгенодиагностику используют в различных вариантах, которые приведены ниже.

    При рентгеноскопии рентгеновская трубка расположена позади пациента. Перед ним располагается флуоресцирующий экран. На экране наблюдается теневое (позитивное) изображение. В каждом отдельном случае подбирается соответствующая жесткость излучения, так чтобы оно проходило через мягкие ткани, но достаточно поглощалось плотными. В противном случае получается однородная тень. На экране сердце, ребра видны темными, легкие – светлыми.

    При рентгенографии объект помещается на кассете, в которую вложена пленка со специальной фотоэмульсией. Рентгеновская трубка располагается над объектом. Получаемая рентгенограмма дает негативное изображение, т.е. обратное по контрасту с картиной, наблюдаемой при просвечивании. В данном методе имеет место большая четкость изображения, чем в (1), поэтому наблюдаются детали, которые трудно рассмотреть при просвечивании.

Перспективным вариантом данного метода является рентгеновская томография и "машинный вариант" – компьютерная томография.

3. При флюорографии, на чувствительной малоформатной пленке фиксируется изображение с большого экрана. При рассматривании снимки рассматриваются на специальном увеличителе.

Рентгенотерапия – использование рентгеновского излучения для уничтожения злокачественных образований.

Биологическое действие излучения заключается в нарушении жизнедеятельности, особенно быстро размножающихся клеток.

КОМПЬЮТЕРНАЯ ТОМОГРАФИЯ (КТ)

Метод рентгеновской компьютерной томографии основан на реконструкции изображения определенного сечения тела пациента путем регистрации большого количества рентгеновских проекций этого сечения, выполненных под разными углами. Информация от датчиков, регистрирующих эти проекции, поступает в компьютер, который по специальному программе вычисляет распределение плотно сти образца в исследуемом сечении и отображает его на экране дисплея. Полученное таким образом изображение сечения тела пациента характеризуется прекрасной четкостью и высокой информативностью. Программа позволяет при необходимости увеличить контраст изображения в десятки и даже сотни раз. Это расширяет диагностические возможности метода.

Видеографы (аппараты с цифровой обработкой рентгеновского изображения) в современной стоматологии.

В стоматологии именно рентгенологическое исследование является основным диагностическим методом. Однако ряд традиционных организационно–технических особенностей рентгенодиагностики делают ее не вполне комфортной как для пациента, так и для стоматологических клиник. Это, прежде всего, необходимость контакта пациента с ионизирующим излучением, создающим часто значительную лучевую нагрузку на организм, это также необходимость фотопроцесса, а следовательно, необходимость фотореактивов, в том числе токсичных. Это, наконец, громоздкий архив, тяжелые папки и конверты с рентгеновскими пленками.

Кроме того, современный уровень развития стоматологии делает недостаточной субъективную оценку рентгенограмм человеческим глазом. Как оказалось, из многообразия оттенков серого тона, содержащегося в рентгеновском изображении, глаз воспринимает только 64.

Очевидно, что для получения четкого и подробного изображения твердых тканей зубо–челюстной системы при минимальной лучевой нагрузке нужны иные решения. Поиск привел к созданию, так называемых, радиографических систем, видеографов – систем цифровой рентгенографии.

Без технических подробностей принцип действия таких систем состоит в следующем. Рентгеновское излучение поступает через объект не на фоточувствительную пленку, а на специальный внутриоральный датчик (специальную электронную матрицу). Соответствующий сигнал от матрицы передается на преобразующее его в цифровую форму оцифровывающее устройство (аналого-цифровой преобразователь, АЦП), связанное с компьютером. Специальное программное обеспечение строит на экране компьютера рентгеновское изображение и позволяет обработать его, сохранять на жестком или гибком носителе информации (винчестере, дискетах), в виде файла распечатывать его как картинку.

В цифровой системе рентгеновское изображение представляет собой совокупность точек, имеющих различные цифровые значения градации серого тона. Предусмотренная программой оптимизация отображения информации дает возможность получить оптимальный по яркости и контрастности кадр при относительно малой дозе облучения.

В современных системах, созданными, например, фирмами Trophy (Франция) или Schick (США) при формировании кадра используется 4096 оттенков серого, время экспозиции зависит от объекта исследования и, в среднем, составляет сотые – десятые доли секунды, снижение лучевой нагрузки по отношению к пленке – до 90 % для внутриоральных систем, до 70 % для панорамных видеографов.

При обработке изображений видеографы позволяют:

    Получать позитивные и негативные изображения, изображения в псевдоцвете, рельефные изображения.

    Повышать контраст и увеличивать интересующий фрагмент изображения.

    Оценивать изменение плотности зубных тканей и костных структур, контролировать однородность заполнения каналов.

    В эндодонтии определять длину канала любой кривизны, а в хирургии подбирать размер имплантата с точностью 0,1 мм.

    Уникальная система Caries detector с элементами искусственного интеллекта при анализе снимка позволяет обнаружить кариес в стадии пятна, кариес корня и скрытый кариес.

«Ф» в формуле (3) относится ко всему интервалу излучаемых длин волн и часто называется «Интегральный поток энергии».

Идет уже 122 год со дня памятной даты гениального достижения В.К.Рентгена, но даже столь длительное время не смогло уменьшить значимость того щедрого подарка, который он сделал человечеству. История открытая рентгеновского излучения весьма поучительна и очень характерна для других величайших прорывов золотого века расцвета европейской науки. Его одновременно можно назвать как случайным, так и логичным, поскольку блуждая, в сущности, в потемках, немецкий ученый интуитивно чувствовал, что стоит на пороге изобретения, которое перевернет все представления о современной ему физической науке.

Трудно переоценить прикладное значение находки рентгеновских лучей. Ниже мы поговорим о них более подробно, а сейчас просто констатируем факт: по сути, до открытия гениального немца, медицине, за всю свою многовековую историю не удавалось найти способы визуального ознакомления с состоянием внутренних органов человека без применения хирургического вмешательства. Это существенно сокращало возможности проведения более или менее точной диагностики внутренних болезней, а, следовательно, эффективной терапии. Сегодня же рентген настолько вошел в нашу жизнь, что практически является неизменным приложением к слову «диагноз» (если не сказать – синонимом к нему)!

Открытие Рентгена нашло своё применение в различных областях.

Как это произошло?

Итак, год 1895, дата – восьмое ноября. Именно она считается днем открытия рентгеновского излучения. Недавно назначенный ректором Вюрцбургского университета Вильгельм Рентген по привычке задержался в своей физико-химической лаборатории почти до ночи. Выключив перед уходом электрические приборы, он обнаружил, что от одной из пробирок, в которой находилась прозрачная жидкость, исходит зеленоватое свечение. Ученый заметил, что не успел выключить один из опытных аппаратов – это была вакуумная трубка. Тут же исправив свою оплошность, физик увидел, что свечения – как не бывало. Самое интересное заключалось в том, что баночка с жидким содержимым находилась в противоположном конце лаборатории, а это означало, что от вакуумной трубки исходил неведомый доселе луч. Он решил удостовериться в верности своей догадки и стал выставлять на пути луча все, что попадалось под руку: тонкий бумажный лист, более плотный картон, затем стекло, наконец – деревянную доску. Эффект был один и тот же – эти удивительные лучи не признавали никаких преград! Тогда ученого осенило – он поставил еще один заслон, представляющий собой тару, в которой находились уже металлические гири, после чего замер от удивления: сквозь коробку абсолютно точно высвечивались контуры гирь! Забыв о том, что давно пора домой, ученый начал экспериментировать и с другими предметами, но когда случайным образом в зоне действия лучей оказалась его рука, он во всех деталях увидел внутреннюю ее часть – лишь костные структуры оставались непрозрачными. Так было обнаружено рентгеновское излучение – естественно, в дальнейшем ученый назвал таинственные лучи своим именем.

Открытие Рентгена на практике

Не один год настойчиво продолжая эксперименты, ученый пытался не только докопаться до физической сути своего изобретенья, но и выяснить, какое прикладное значение будет иметь применение рентгеновского излучения? В этом ему помогали лучшие светила отрасли, и результаты не замедлили сказаться: обнаружение рентгеновских лучей дало мощный импульс развитию целых направлений естественных наук и отраслей прикладной инженерии. Именно при помощи рентгеновских излучений сегодня обеспечивается наша безопасность в аэропортах и железнодорожных вокзалах, а ювелирам и искусствоведам позволяет отличить оригинальные изделия и предметы живописи от подделок.

Однако наиболее ценным изобретение оказалось для медицинской науки, положив начало одной из ее ответвлений — рентгенологии. Ввиду того, что рентгеновские лучи, в отличие от иных форм электромагнитных излучений, имеют очень небольшую длину волны, они обладают гораздо большей энергией и проницающей способностью, и буквально просвечивают насквозь внутренние структуры человеческого тела.

Рентген применяли при лечении рака, туберкулёза и других заболеваний.

Применение рентгеновских лучей в медицине

Если на заре использования рентгеновских лучей врачи в основном занимались определением переломов, то из года в год исследуемые заболевания становились все разнообразнее. Сегодня облучение рентгеном помогает не только обнаружить любую проблему, связанную с проблемами внутренних органов (этим занимается рентгенодиагностика), но и позволяет лечить серьезнейшие недуги, в частности – некоторые злокачественные новообразования (тут на помощь приходит рентгенотерапия).

В первом случае используются новейшие инновационные технологии типа обычной или осевой компьютерной томографии с получением цветных изображений внутренних органов человека в нужных проекциях.

При помощи рентгеновской съемки решаются и такие важные стоматологические проблемы, как обнаружение кариесов и воспалительных процессов в основаниях зубов. При проведении рентгенотерапии облучение лучами служит достижению следующих целей:

  • уничтожению раковых клеток и предотвращению их развития;
  • уменьшению параметров злокачественных новообразований, в частности – их размеров;
  • снятию болевых синдромов.

Кроме того, рентгеновские лучи широко применяются при мониторинге метаболических процессов в организме, а также весьма продуктивно используются в комбинации с физиотерапевтическими процедурами. Правда, здесь необходимо соблюдать одно важное правило: не использовать эти две манипуляции в один и тот же день, в противном случае облучающая нагрузка на систему кроветворения может стать непомерно высокой. Единственной безопасной процедурой в день, когда проводится рентген – исследование, является ингаляция.

На сегодняшний день рентгеновские лучи применяются во многих отраслях науки и техники.

Так ли все радужно на самом деле?

Исследования на рентгеновском аппарате имеют свою специфику. Дело в том, что неправильное использование этих чудодейственных лучей может оказать негативное воздействие на человека, а неправильная дозировка просто опасна для жизни. Сам великий ученый и его современники еще не ведали об этом и не пользовались мерами защиты, поэтому некоторые из них получили не совместимые с жизнью ожоги. Только много лет спустя специалисты начали рассчитывать и устанавливать предельно допустимые пороги для облучения отдельных органов, параллельно создавая средства предохранения.

Поэтому сегодня радиационный уровень, воздействующий на человека при медицинских обследованиях, в основном достаточно мал по сравнению с теми преимуществами, которые дает точный диагноз, а в некоторых случаях – непосредственная рентгенотерапия. Промежуток времени облучения, как правило, составляет миллисекунды.

В то же время, в каждом индивидуальном случае решение о целесообразности проведения рентгенографии принимает лечащий врач. Особенно актуально это в тех случаях, когда в терапевтических либо диагностических целях необходимо использовать относительно высокие дозы облучений, например – при проведении компьютерной томографии или когда процедура предполагает использования контрастных материалов. При этом, перед назначением рентгена медики обязательно изучают анамнез больного, включая все пройденные им исследования. Помимо этого, при рентгенологических обследованиях существуют определенные ограничения для некоторой категории больных, к которым относятся готовящиеся стать матерью женщины, дети до 15 лет и некоторые другие.

Заключение

Несмотря на некоторые негативные моменты и настоятельную необходимость соблюдения мер предосторожности, значение использования рентгена в медицинских целях не поддается оценке. Свидетельством тому миллионы людей, жизни которых спасло гениальное изобретение Вильгельма Рентгена!

Виды излучений

Хоть глаза человека по своему устройству очень сложные и могут приспосабливаться к разным расстояниям и типу освещения, они воспринимают лишь солнечное излучение. Вместе с тем науке известны и другие электромагнитные потоки, такие как радиоволны, инфракрасные (тепловые) и ультрафиолетовые волны, а также гамма- и рентгеновские лучи. Последние по своей длине и свойствам очень похожи и отличаются не столько своей физической природой, сколько способом получения. Гамма-излучение возникает при распаде радиоактивных элементов, а рентгеновские лучи появляются при бомбардировке электронами или этими же рентгеновскими лучами какого-либо тела. Этот вид энергии может как приносить человеку огромную пользу, так и представлять серьезную опасность. Их испускают звезды (в том числе и Солнце), и они часто применяются в промышленности, больницах и лабораториях. А потому не лишним будет узнать о лучах подробнее.

Открытие рентгеновских лучей

Если бы не любознательность и наблюдательность немецкого физика Вильгельма Рентгена, человечество долго еще оставалось бы в неведении относительно их существования. В 1895 г. многих физиков интересовала природа и свойства катодных лучей, которые появлялись в результате газового разряда при малом давлении. Проводя опыты с таким излучением, В. Рентген обратил внимание на то, что фотопластинка, оказавшаяся неподалеку от разрядной трубки, засвечивалась даже тогда, когда ее заворачивали в черную бумагу. А затем его поразило еще одно странное явление: стоило обернуть разрядную трубку бумажным экраном, который был предварительно смочен в растворе платиносинеродистого бария, он вдруг начинал светиться. Причем когда ученый держал руку между экраном и трубкой, то на нем были заметны темные очертания костей на более светлом фоне всей руки. Физик понял, что совершил открытие, и назвал новое проникающее излучение Х-лучами, а позже за ними закрепилось еще одно название: рентгеновские лучи. Последующие эксперименты показали, что такие волны возникают, когда на пути быстрых электронов появляются любые препятствия, в том числе металлические электроды.

Свойства рентгеновских лучей

Излучение, открытое Рентгеном, воздействовало на фотопластинку и вызывало ионизацию воздуха, но вместе с тем не было заметно, что оно отражается от какого-либо вещества или испытывает преломление. А направление его распространения не зависело от электромагнитного поля. Сильную проницающую способность рентгеновских волн и прочие свойства ученые связывали с их малой длиной. Первое предположение, что Х-лучи - это электромагнитные волны, возникающие при резком замедлении электронов, было всего лишь гипотезой, которой нужно было найти подтверждения. И таковые были получены спустя 15 лет после смерти выдающегося немецкого физика. Поскольку рентгеновские лучи - это волны, то им должно быть свойственно явление дифракции. Вначале это хотели обнаружить, пропуская излучение сквозь микроскопические трещины в свинцовых пластинах, но ничего подобного замечено не было.

Прорыв Лауэ

А затем немецкий физик М. Лауэ предположил, что длина волн слишком мала, чтобы заметить дифракцию на искусственных препятствиях, и тогда ученые решили использовать кристаллы с упорядоченной решеткой атомов. Результат на практике полностью подтвердил теоретические предположения: на фотопластинке помимо большого центрального пятна появились регулярно расположенные маленькие пятнышки. Это явление можно было объяснить только дифракцией, и благодаря ей удалось определить длину рентгеновской волны. Оказалось, что она меньше ультрафиолетового излучения и по своему порядку примерно соответствует размерам атома. Частота таких волн лежит в интервале от 3 . 10 16 до 3 . 10 20 Гц.

Современную медицинскую диагностику и лечение некоторых заболеваний невозможно представить без приборов, использующих свойства рентгеновского излучения. Открытие рентгеновских лучей произошло более 100 лет назад, но и сейчас не прекращаются работы над созданием новых методик и аппаратов, позволяющих минимизировать негативное действие излучения на организм человека.

Кто и как открыл Х-лучи

В естественных условиях поток лучей рентгена встречается редко и излучается только некоторыми радиоактивными изотопами. Рентгеновское излучение или Х-лучи были обнаружены только в 1895 году немецким учёным Wilhelm Röntgen. Это открытие произошло случайно, во время проведения опыта по исследованию поведения лучей света в условиях, приближающихся к вакууму. В эксперименте были задействованы катодная газоразрядная трубка с пониженным давлением и флуоресцентный экран, который всякий раз начинал светиться в момент когда трубка начинала действовать.

Заинтересовавшись странным эффектом, Рентген провёл серию исследований, показывающих что возникающее не видимое глазу излучение способно проникать сквозь различные преграды: бумагу, дерево, стекло, некоторые металлы, и даже через человеческое тело. Несмотря на отсутствие понимания самой природы происходящего, вызвано ли такое явление генерацией потока неизвестных частиц или волнами, была отмечена следующая закономерность – излучение легко проходит через мягкие ткани организма, и гораздо тяжелее сквозь твёрдые живые ткани и неживые вещества.

Рентген был не первым кто изучал подобное явление. В середине XIX столетия, схожие возможности изучал француз Антуан Масон и англичанин Уильям Крукс. Тем не менее, именно Рентген первым изобрёл катодную трубку и индикатор, который можно было применить в медицине. Он первым опубликовал научный труд, принёсший ему звание первого нобелевского лауреата среди физиков.

В 1901 году началось плодотворное сотрудничество трёх учёных, ставших отцами-основателями радиологии и рентгенологии.

Свойства рентгеновского излучения

Рентгеновские лучи – это составная часть общего спектра электромагнитного излучения. Длина волны расположена между гамма- и ультрафиолетовым лучами. Для Х-лучей характерны все обычные волновые свойства:

  • дифракция;
  • преломление;
  • интерференция;
  • скорость распространения (она равна световой).

Для искусственного генерирования потока рентгеновских лучей применяют специальные приборы – рентгеновские трубки. Рентген-излучение возникает из-за контакта быстрых электронов вольфрама с веществами, испаряющимися из раскалённого анода. На фоне взаимодействия возникают электромагнитные волны малой длины, находящиеся в спектре от 100 до 0,01 нм и в энергетическом диапазоне 100-0,1 МэВ. Если длина волны лучей меньше чем 0,2 нм – это жёсткое излучение, если длина волны больше указанной величины, их называют мягкими рентгеновскими лучами.

Показательно то, что кинетическая энергия, возникающая от соприкосновения электронов и анодного вещества, на 99% превращается в энергию тепла и только 1% является Х-лучами.

Рентгеновское излучение – тормозное и характеристическое

Х-излучение представляет собой наложение двух видов лучей – тормозных и характеристических. Они генерируются в трубке одновременно. Поэтому облучение рентгеном и характеристика каждой конкретной рентгеновской трубки – спектр её излучения, зависит от этих показателей, и представляет собой их наложение.

Тормозные или непрерывные рентгеновские лучи – это результат торможения электронов, испаряемых из вольфрамовой спирали.

Характеристические или линейчатые лучи рентгена образуются в момент перестройки атомов вещества анода рентгеновской трубки. Длина волны характеристических лучей непосредственно зависит от атомного номера химического элемента, применяемого для изготовления анода трубки.

Перечисленные свойства рентгеновских лучей позволяют применять их на практике:

  • невидимость для обычного взгляда;
  • высокая проникающая способность сквозь живые ткани и неживые материалы, которые не пропускают лучи видимого спектра;
  • ионизационное воздействие на молекулярные структуры.

Принципы получения рентген-изображения

Свойства рентгеновских лучей, на которых основано получение изображения – это способность либо разлагать, либо вызвать свечение некоторых веществ.

Рентген облучение вызывает флуоресцентное свечение у сульфидов кадмия и цинка – зелёным, а у вольфрамата кальция – голубым цветом. Это свойство используется в методике медицинского рентгенологического просвечивания, а также повышает функциональность рентгенологических экранов.

Фотохимическое воздействие рентгеновских лучей на светочувствительные галогенсеребряные материалы (засвечивание) позволяет осуществлять диагностику – делать рентгенологические снимки. Это свойство также используется при измерении величины суммарной дозы, которую получают лаборанты в рентген-кабинетах. В нательных дозиметрах вставлены специальные чувствительные ленты и индикаторы. Ионизирующее действие рентгеновского излучения позволяет определять и качественную характеристику полученных рентген-лучей.

Однократное облучение при выполнении обычной рентгенографии повышает риск возникновения рака всего лишь на 0,001%.

Области, где применяют рентгеновское излучение

Применение рентгеновских лучей допустимо в следующих отраслях:

  1. Безопасность. Стационарные и переносные приборы для обнаружения опасных и запрещённых предметов в аэропортах, таможнях или в местах большого скопления людей.
  2. Химическая промышленность, металлургия, археология, архитектура, строительство, реставрационные работы – для обнаружения дефектов и проведения химического анализа веществ.
  3. Астрономия. Помогает проводить наблюдение за космическими телами и явлениями при помощи рентгеновских телескопов.
  4. Военная отрасль. Для разработки лазерного оружия.

Главное применение рентгеновского излучения - медицинская сфера. Сегодня в раздел медицинской радиологии входят: радиодиагностика, радиотерапия (рентгенотерапия), радиохирургия. Медицинские вузы выпускают узкопрофильных специалистов – врачей-радиологов.

Х-Излучение - вред и польза, влияние на организм

Высокая проникающая способность и ионизирующее воздействие рентгеновских лучей может вызвать изменение структуры ДНК клетки, поэтому представляет опасность для человека. Вред от рентгеновского излучения прямо пропорционален полученной дозе облучения. Разные органы реагируют на облучение в различной степени. К самым восприимчивым относят:

  • костный мозг и костная ткань;
  • хрусталик глаза;
  • щитовидная железа;
  • молочные и половые железы;
  • ткани лёгких.

Бесконтрольное использование рентгеновского облучения может стать причиной обратимых и необратимых патологий.

Последствия рентгеновского облучения:

  • поражение костного мозга и возникновение патологий кроветворной системы – эритроцитопении, тромбоцитопении, лейкемии;
  • повреждение хрусталика, с последующим развитием катаракты;
  • клеточные мутации, передающиеся по наследству;
  • развитие онкологических заболеваний;
  • получение лучевых ожогов;
  • развитие лучевой болезни.

Важно! В отличие от радиоактивных веществ, рентгеновские лучи не накапливаются в тканях тела, а это значит, что и выводить рентгеновские лучи из организма не нужно. Вредное действие рентгеновского излучения заканчивается вместе с выключением медицинского прибора.

Применение рентгеновского излучения в медицине допустимо не только в диагностических (травматология, стоматология), но и в терапевтических целях:

  • от рентгена в малых дозах стимулируется обмен веществ в живых клетках и тканях;
  • определённые граничные дозы используются для лечения онкологических и доброкачественных новообразований.

Способы диагностики патологий с помощью Х-лучей

Радиодиагностика включает следующие методики:

  1. Рентгеноскопия – исследование, в ходе которого получают изображение на флуоресцентном экране в режиме реального времени. Наряду с классическим получением изображения части тела в реальном времени, сегодня существуют технологии рентгенотелевизионного просвечивания – изображение переносится с флуоресцентного экрана на телевизионный монитор, находящийся в другом помещении. Разработано несколько цифровых способов обработки полученного изображения, с последующим переносом его с экрана на бумагу.
  2. Флюорография – самый дешёвый метод исследования органов грудной клетки, заключающий в изготовлении уменьшенного снимка 7х7 см. Несмотря на вероятность погрешности, является единственным способом массового ежегодного обследования населения. Метод не представляет опасности и не требует вывода полученной дозы облучения из организма.
  3. Рентгенография – получение суммарного изображения на плёнку или бумагу для уточнения формы органа, его положения или тонуса. Может использоваться для оценки перистальтики и состояния слизистых оболочек. Если существует возможность выбора, то среди современных рентгенографических приборов предпочтение следует отдавать ни цифровым аппаратам, где поток х-лучей может быть выше чем у старых приборов, а малодозовым – рентген-аппараты с прямыми плоскими полупроводниковыми детекторами. Они позволяют снизить нагрузку на организм в 4 раза.
  4. Компьютерная рентгеновская томография – методика, использующая рентгеновские лучи для получения нужного количества снимков срезов выбранного органа. Среди множества разновидностей современных аппаратов КТ, для серии повторных исследований используют низкодозные компьютерные томографы высокого разрешения.

Радиотерапия

Терапия при помощи рентгеновских лучей относится к методам местного лечения. Чаще всего метод используется для уничтожения клеток раковых опухолей. Поскольку эффект воздействия сопоставим с хирургическим удалением, то этот метод лечения часто называют радиохирургией.

Сегодня лечение х-лучами проводится такими способами:

  1. Наружный (протонная терапия) – пучок излучения попадает на тело пациента извне.
  2. Внутренний (брахиотерапия) – использование радиоактивных капсул путём их имплантации в тело, с помещением ближе к раковой опухоли. Недостаток этого метода лечения состоит в том, что пока капсулу не извлекут из организма, больной нуждается в изоляции.

Эти методы являются щадящими, а их применение предпочтительнее химиотерапии в ряде случаев. Такая популярность связана с тем, что лучи не скапливаются и не требуют выведения из организма, они оказывают выборочное действие, не воздействуя на другие клетки и ткани.

Безопасная норма облучения Х-лучами

У этого показателя нормы допустимого годового облучения есть своё название – генетически значимая эквивалентная доза (ГЗД). Чётких количественных значений у этого показателя нет.

  1. Этот показатель зависит от возраста и желания пациентом в дальнейшем иметь детей.
  2. Зависит от того какие именно органы были подвергнуты исследованию или лечению.
  3. На ГЗД влияет уровень естественного радиоактивного фона региона проживания человека.

Сегодня действую следующие усреднённые нормативы ГЗД:

  • уровень облучения от всех источников, за исключением медицинских, и без учёта природного фона радиации – 167 мБэр в год;
  • норма для ежегодного медицинского обследования – не выше 100 мБэр в год;
  • суммарная безопасная величина – 392 мБэр в год.

Рентгеновское излучение не требует выведения из организма, и является опасным только в случае интенсивного и длительного воздействия. Современная медицинская аппаратура использует низкоэнергетическое облучение малой длительности, поэтому её применение считается относительно безвредным.

Рентгеновское излучение (синоним рентгеновские лучи) - это с широким диапазоном длин волн (от 8·10 -6 до 10 -12 см). Рентгеновское излучение возникает при торможении заряженных частиц, чаще всего электронов, в электрическом поле атомов вещества. Образующиеся при этом кванты имеют различную энергию и образуют непрерывный спектр. Максимальная энергия квантов в таком спектре равна энергии налетающих электронов. В (см.) максимальная энергия квантов рентгеновского излучения, выраженная в килоэлектрон-вольтах, численно равна величине приложенного к трубке напряжения, выраженного в киловольтах. При прохождении через вещество рентгеновское излучение взаимодействует с электронами его атомов. Для квантов рентгеновского излучения с энергией до 100 кэв наиболее характерным видом взаимодействия является фотоэффект. В результате такого взаимодействия энергия кванта полностью расходуется на вырывание электрона из атомной оболочки и сообщения ему кинетической энергии. С ростом энергии кванта рентгеновского излучения вероятность фотоэффекта уменьшается и преобладающим становится процесс рассеяния квантов на свободных электронах - так называемый комптон-эффект. В результате такого взаимодействия также образуется вторичный электрон и, кроме того, вылетает квант с энергией меньшей, чем энергия первичного кванта. Если энергия кванта рентгеновского излучения превышает один мегаэлектрон-вольт, может иметь место так называемый эффект образования пар, при котором образуются электрон и позитрон (см. ). Следовательно, при прохождении через вещество происходит уменьшение энергии рентгеновского излучения, т. е. уменьшение его интенсивности. Поскольку при этом с большей вероятностью происходит поглощение квантов низкой энергии, то имеет место обогащение рентгеновского излучения квантами более высокой энергии. Это свойство рентгеновского излучения используют для увеличения средней энергии квантов, т. е. для увеличения его жесткости. Достигается увеличение жесткости рентгеновского излучения использованием специальных фильтров (см. ). Рентгеновское излучение применяют для рентгенодиагностики (см. ) и (см.). См. также Излучения ионизирующие.

Рентгеновское излучение (синоним: рентгеновские лучи, рентгеновы лучи) - квантовое электромагнитное излучение с длиной волны от 250 до 0,025 А (или квантов анергии от 5·10 -2 до 5·10 2 кэв). В 1895 г. открыто В. К. Рентгеном. Смежную с рентгеновским излучением спектральную область электромагнитного излучения, кванты энергии которого превышают 500 кэв, называют гамма-излучением (см.); излучение, кванты энергии которого ниже значений 0,05 кэв, составляет ультрафиолетовое излучение (см.).

Таким образом, представляя относительно небольшую часть обширного спектра электромагнитных излучений, в который входят и радиоволны и видимый свет, рентгеновское излучение, как всякое электромагнитное излучение, распространяется со скоростью света (в пустоте около 300 тыс. км/сек) и характеризуется длиной волны λ (расстояние, на которое излучение распространяется за один период колебания). Рентгеновское излучение обладает также рядом других волновых свойств (преломление, интерференция, дифракция), однако наблюдать их значительно сложнее, чем у более длинноволнового излучения: видимого света, радиоволн.

Спектры рентгеновского излучения: а1 - сплошной тормозной спектр при 310 кв; а - сплошной тормозной спектр при 250 кв, а1 - спектр, фильтрованный 1 мм Cu, а2 - спектр, фильтрованный 2 мм Cu, б - К-серия линии вольфрама.

Для генерирования рентгеновского излучения применяют рентгеновские трубки (см.), в которых излучение возникает при взаимодействии быстрых электронов с атомами вещества анода. Различают рентгеновские излучения двух видов: тормозное и характеристическое. Тормозное рентгеновское излучение, имеющее сплошной спектр, подобно обычному белому свету. Распределение интенсивности в зависимости от длины волны (рис.) представляется кривой с максимумом; в сторону длинных волн кривая спадает полого, а в сторону коротких - круто и обрывается при определенной длине волны (λ0), называемой коротковолновой границей сплошного спектра. Величина λ0 обратно пропорциональна напряжению на трубке. Тормозное излучение возникает при взаимодействии быстрых электронов с ядрами атомов. Интенсивность тормозного излучения прямо пропорциональна силе анодного тока, квадрату напряжения на трубке и атомному номеру (Z) вещества анода.

Если энергия ускоренных в рентгеновской трубке электронов превосходит критическую для вещества анода величину (эта энергия определяется критическим для этого вещества напряжением на трубке Vкр), то возникает характеристическое излучение. Характеристический спектр - линейчатый, его спектральные линии образуют серии, обозначаемые буквами К, L, М, N.

Серия К - самая коротковолновая, серия L - более длинноволновая, серии М и N наблюдаются только у тяжелых элементов (Vкр вольфрама для К-серии - 69,3 кв, для L-серии - 12,1 кв). Характеристическое излучение возникает следующим образом. Быстрые электроны выбивают атомные электроны из внутренних оболочек. Атом возбуждается, а затем возвращается в основное состояние. При этом электроны из внешних, менее связанных оболочек заполняют освободившиеся во внутренних оболочках места, и излучаются фотоны характеристического излучения с энергией, равной разности энергий атома в возбужденном и основном состоянии. Эта разность (а следовательно, и энергия фотона) имеет определенное значение, характерное для каждого элемента. Это явление лежит в основе рентгеноспектрального анализа элементов. На рисунке виден линейчатый спектр вольфрама на фоне сплошного спектра тормозного излучения.

Энергия ускоренных в рентгеновской трубке электронов преобразуется почти целиком в тепловую (анод при этом сильно нагревается), лишь незначительная часть (около 1% при напряжении, близком к 100 кв) превращается в энергию тормозного излучения.

Применение рентгеновского излучения в медицине основано на законах поглощения рентгеновых лучей веществом. Поглощение рентгеновского излучения совершенно не зависит от оптических свойств вещества поглотителя. Бесцветное и прозрачное свинцовое стекло, используемое для защиты персонала рентгеновских кабинетов, практически полностью поглощает рентгеновское излучение. Напротив, лист бумаги, не прозрачный для света, не ослабляет рентгеновского излучения.

Интенсивность однородного (т. е. определенной длины волны) пучка рентгеновского излучения при прохождении через слой поглотителя уменьшается по экспоненциальному закону (е-х), где е - основание натуральных логарифмов (2,718), а показатель экспоненты х равен произведению массового коэффициента ослабления (μ/р) см 2 /г на толщину поглотителя в г/см 2 (здесь р - плотность вещества в г/см 3). Ослабление рентгеновского излучения происходит как за счет рассеяния, так и за счет поглощения. Соответственно массовый коэффициент ослабления является суммой массовых коэффициентов поглощения и рассеяния. Массовый коэффициент поглощения резко возрастает с увеличением атомного номера (Z) поглотителя (пропорционально Z3 или Z5) и с увеличением длины волны (пропорционально λ3). Указанная зависимость от длины волны наблюдается в пределах полос поглощения, на границах которых коэффициент обнаруживает скачки.

Массовый коэффициент рассеяния возрастает с увеличением атомного номера вещества. При λ≥0,ЗÅ коэффициент рассеяния от длины волны не зависит, при λ<0,ЗÅ он уменьшается с уменьшением λ.

Уменьшение коэффициентов поглощения и рассеяния с уменьшением длины волны обусловливает возрастание проникающей способности рентгеновского излучения. Массовый коэффициент поглощения для костей [поглощение в основном обусловлено Са 3 (РO 4) 2 ] почти в 70 раз больше, чем для мягких тканей, где поглощение в основном обусловлено водой. Это объясняет, почему на рентгенограммах так резко выделяется тень костей на фоне мягких тканей.

Распространение неоднородного пучка рентгеновского излучения через любую среду наряду с уменьшением интенсивности сопровождается изменением спектрального состава, изменением качества излучения: длинноволновая часть спектра поглощается в большей степени, чем коротковолновая, излучение становится более однородным. Отфильтровывание длинноволновой части спектра позволяет при рентгенотерапии очагов, глубоко расположенных в теле человека, улучшить соотношение между глубинной и поверхностной дозами (см. Рентгеновские фильтры). Для характеристики качества неоднородного пучка рентгеновых лучей используется понятие «слой половинного ослабления (Л)» - слой вещества, ослабляющий излучение наполовину. Толщина этого слоя зависит от напряжения на трубке, толщины и материала фильтра. Для измерения слоев половинного ослабления используют целлофан (до энергии 12 кэв), алюминий (20-100 кэв), медь (60-300 кэв), свинец и медь (>300 кэв). Для рентгеновых лучей, генерируемых при напряжениях 80-120 кв, 1 мм меди по фильтрующей способности эквивалентен 26 мм алюминия, 1 мм свинца - 50,9 мм алюминия.

Поглощение и рассеяние рентгеновского излучения обусловлено его корпускулярными свойствами; рентгеновское излучение взаимодействует с атомами как поток корпускул (частиц) - фотонов, каждый из которых имеет определенную энергию (обратно пропорциональную длине волны рентгеновского излучения). Интервал энергий рентгеновских фотонов 0,05-500 кэв.

Поглощение рентгеновского излучения обусловлено фотоэлектрическим эффектом: поглощение фотона электронной оболочкой сопровождается вырыванием электрона. Атом возбуждается и, возвращаясь в основное состояние, испускает характеристическое излучение. Вылетающий фотоэлектрон уносит всю энергию фотона (за вычетом энергии связи электрона в атоме).

Рассеяние рентгеновского излучения обусловлено электронами рассеивающей среды. Различают классическое рассеяние (длина волны излучения не меняется, но меняется направление распространения) и рассеяние с изменением длины волны - комптон-эффект (длина волны рассеянного излучения больше, чем падающего). В последнем случае фотон ведет себя как движущийся шарик, а рассеяние фотонов происходит, по образному выражению Комнтона, наподобие игры на бильярде фотонами и электронами: сталкиваясь с электроном, фотон передает ему часть своей энергии и рассеивается, обладая уже меньшей энергией (соответственно длина волны рассеянного излучения увеличивается), электрон вылетает из атома с энергией отдачи (эти электроны называют комптон-электронами, или электронами отдачи). Поглощение энергии рентгеновского излучения происходит при образовании вторичных электронов (комптон - и фотоэлектронов) и передаче им энергии. Энергия рентгеновского излучения, переданная единице массы вещества, определяет поглощенную дозу рентгеновского излучения. Единица этой дозы 1 рад соответствует 100 эрг/г. За счет поглощенной энергии в веществе поглотителя протекает ряд вторичных процессов, имеющих важное значение для дозиметрии рентгеновского излучения, так как именно на них основываются методы измерения рентгеновского излучения. (см. Дозиметрия).

Все газы и многие жидкости, полупроводники и диэлектрики под действием рентгеновского излучения увеличивают электрическую проводимость. Проводимость обнаруживают лучшие изоляционные материалы: парафин, слюда, резина, янтарь. Изменение проводимости обусловлено ионизацией среды, т. е. разделением нейтральных молекул на положительные и отрицательные ионы (ионизацию производят вторичные электроны). Ионизация в воздухе используется для определения экспозиционной дозы рентгеновского излучения (дозы в воздухе), которая измеряется в рентгенах (см. Дозы ионизирующих излучений). При дозе в 1 р поглощенная доза в воздухе равна 0,88 рад.

Под действием рентгеновского излучения в результате возбуждения молекул вещества (и при рекомбинации ионов) возбуждается во многих случаях видимое свечение вещества. При больших интенсивностях рентгеновского излучения наблюдается видимое свечение воздуха, бумаги, парафина и т. п. (исключение составляют металлы). Наибольший выход видимого свечения дают такие кристаллические люминофоры, как Zn·CdS·Ag-фосфор и другие, применяемые для экранов при рентгеноскопии.

Под действием рентгеновского излучения в веществе могут проходить также различные химические процессы: разложение галоидных соединений серебра (фотографический эффект, используемый при рентгенографии), разложение воды и водных растворов перекиси водорода, изменение свойств целлулоида (помутнение и выделение камфоры), парафина (помутнение и отбелка).

В результате полного преобразования вся поглощенная химически инертным веществом энергия рентгеновское излучение превращается в теплоту. Измерение очень малых количеств теплоты требует высокочувствительных методов, зато является основным способом абсолютных измерений рентгеновского излучения.

Вторичные биологические эффекты от воздействия рентгеновского излучения являются основой медицинской рентгенотерапии (см.). Рентгеновские излучения, кванты которых составляют 6-16 кэв (эффективные длины волн от 2 до 5 Å), практически полностью поглощаются кожным покровом ткани человеческого тела; они называются пограничными лучами, или иногда лучами Букки (см. Букки лучи). Для глубокой рентгенотерапии применяется жесткое фильтрованное излучение с эффективными квантами энергии от 100 до 300 кэв.

Биологическое действие рентгеновского излучения должно учитываться не только при рентгенотерапии, но и при рентгенодиагностике, а также во всех других случаях контакта с рентгеновским излучением, требующих применения противолучевой защиты (см.).

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса