Подпишись и читай
самые интересные
статьи первым!

С помощью спектрального анализа были открыты. Спектральный анализ

Не так давно товарищ Makeman описывал , как с помощью спектрального анализа можно разложить некоторый звуковой сигнал на слагающие его ноты. Давайте немного абстрагируемся от звука и положим, что у нас есть некоторый оцифрованный сигнал, спектральный состав которого мы хотим определить, и достаточно точно.

Под катом краткий обзор метода выделения гармоник из произвольного сигнала с помощью цифрового гетеродинирования, и немного особой, Фурье-магии.

Итак, что имеем.
Файл с отсчетами оцифрованного сигнала. Известно, что сигнал представляет собой сумму синусоид со своими частотами, амплитудами и начальными фазами, и, возможно, белый шум.

Что будем делать.
Использовать спектральный анализ для того, чтобы определить:

  • количество гармоник в составе сигнала, а для каждой: амплитуду, частоту (далее в контексте числа длин волн на длину сигнала), начальную фазу;
  • наличие/отсутствие белого шума, а при наличии, его СКО (среднеквадратическое отклонение);
  • наличие/отсутствие постоянной составляющей сигнала;
  • всё это оформить в красивенький PDF отчёт с блэкджеком и иллюстрациями.

Будем решать данную задачу на Java.

Матчасть

Как я уже говорил, структура сигнала заведомо известна: это сумма синусоид и какая-то шумовая составляющая. Так сложилось, что для анализа периодических сигналов в инженерной практике широко используют мощный математический аппарат, именуемый в общем «Фурье-анализ» . Давайте кратенько разберём, что же это за зверь такой.
Немного особой, Фурье-магии
Не так давно, в 19 веке, французский математик Жан Батист Жозеф Фурье показал, что любую функцию, удовлетворяющую некоторым условиям (непрерывность во времени, периодичность, удовлетворение условиям Дирихле) можно разложить в ряд, который в дальнейшем получил его имя - ряд Фурье .

В инженерной практике разложение периодических функций в ряд Фурье широко используется, например, в задачах теории цепей: несинусоидальное входное воздействие раскладывают на сумму синусоидальных и рассчитывают необходимые параметры цепей, например, по методу наложения.

Существует несколько возможных вариантов записи коэффициентов ряда Фурье, нам же лишь необходимо знать суть.
Разложение в ряд Фурье позволяет разложить непрерывную функцию в сумму других непрерывных функций. И в общем случае, ряд будет иметь бесконечное количество членов.

Дальнейшим усовершенствованием подхода Фурье является интегральное преобразование его же имени. Преобразование Фурье .
В отличие от ряда Фурье, преобразование Фурье раскладывает функцию не по дискретным частотам (набор частот ряда Фурье, по которым происходит разложение, вообще говоря, дискретный), а по непрерывным.
Давайте взглянем на то, как соотносятся коэффициенты ряда Фурье и результат преобразования Фурье, именуемый, собственно, спектром .
Небольшое отступление: спектр преобразования Фурье - в общем случае, функция комплексная, описывающая комплексные амплитуды соответствующих гармоник. Т.е., значения спектра - это комплексные числа, чьи модули являются амплитудами соответствующих частот, а аргументы - соответствующими начальными фазами. На практике, рассматривают отдельно амплитудный спектр и фазовый спектр .


Рис. 1. Соответствие ряда Фурье и преобразования Фурье на примере амплитудного спектра.

Легко видно, что коэффициенты ряда Фурье являются ни чем иным, как значениями преобразования Фурье в дискретные моменты времени.

Однако, преобразование Фурье сопоставляет непрерывной во времени, бесконечной функции другую, непрерывную по частоте, бесконечную функцию - спектр. Как быть, если у нас нет бесконечной во времени функции, а есть лишь какая-то записанная её дискретная во времени часть? Ответ на этот вопрос даёт дальнейшей развитие преобразования Фурье - дискретное преобразование Фурье (ДПФ) .

Дискретное преобразование Фурье призвано решить проблему необходимости непрерывности и бесконечности во времени сигнала. По сути, мы полагаем, что вырезали какую-то часть бесконечного сигнала, а всю остальную временную область считаем этот сигнал нулевым.

Математически это означает, что, имея исследуемую бесконечную во времени функцию f(t), мы умножаем ее на некоторую оконную функцию w(t), которая обращается в ноль везде, кроме интересующего нас интервала времени.

Если «выходом» классического преобразования Фурье является спектр – функция, то «выходом» дискретного преобразования Фурье является дискретный спектр. И на вход тоже подаются отсчёты дискретного сигнала.

Остальные свойства преобразования Фурье не изменяются: о них можно прочитать в соответствующей литературе.

Нам же нужно лишь знать о Фурье-образе синусоидального сигнала, который мы и будем стараться отыскать в нашем спектре. В общем случае, это пара дельта-функций, симметричная относительно нулевой частоты в частотной области.


Рис. 2. Амплитудный спектр синусоидального сигнала.

Я уже упомянул, что, вообще говоря, мы рассматриваем не исходную функцию, а некоторое её произведение с оконной функцией. Тогда, если спектр исходной функции - F(w), а оконной W(w), то спектром произведения будет такая неприятная операция, как свёртка этих двух спектров (F*W)(w) (Теорема о свёртке).

На практике это означает, что вместо дельта-функции, в спектре мы увидим что-то вроде этого:


Рис. 3. Эффект растекания спектра.

Этот эффект именуют также растеканием спектра (англ. spectral leekage). А шумы, появляющиеся вследствие растекания спектра, соответственно, боковыми лепестками (англ. sidelobes).
Для борьбы с боковыми лепестками применяют другие, непрямоугольные оконные функции. Основной характеристикой «эффективности» оконной функции является уровень боковых лепестков (дБ). Сводная таблица уровней боковых лепестков для некоторых часто используемых оконных функций приведена ниже.

Основной проблемой в нашей задаче является то, что боковые лепестки могут маскировать другие гармоники, лежащие рядом.


Рис. 4. Отдельные спектры гармоник.

Видно, что при сложении приведённых спектров, более слабые гармоники как бы растворятся в более сильной.


Рис. 5. Чётко видна лишь одна гармоника. Нехорошо.

Другой подход к борьбе с растеканием спектра состоит в вычитании из сигнала гармоник, создающих это самое растекание.
То есть, установив амплитуду, частоту и начальную фазу гармоники, можно вычесть её из сигнала, при этом мы уберём и «дельта-функцию», соответствующую ей, а вместе с ней и боковые лепестки, порождаемые ей. Другой вопрос состоит в том, как же точно узнать параметры нужной гармоники. Недостаточно просто взять нужные данные из комплексной амплитуды. Комплексные амплитуды спектра сформированы по целым частотам, однако, ничто не мешает гармонике иметь и дробную частоту. В этом случае, комплексная амплитуда как бы расплывается между двумя соседними частотами, и точную её частоту, как и другие параметры, установить нельзя.

Для установления точной частоты и комплексной амплитуды нужной гармоники, мы воспользуемся приёмом, широко применяемым во многих отраслях инженерной практики – гетеродинирование .

Посмотрим, что получится, если умножить входной сигнал на комплексную гармонику Exp(I*w*t). Спектр сигнала сдвинется на величину w вправо.
Этим свойством мы и воспользуемся, сдвигая спектр нашего сигнала вправо, до тех пор, пока гармоника не станет ещё больше напоминать дельта-функцию (то есть, пока некоторое локальное отношение сигнал/шум не достигнет максимума). Тогда мы и сможем вычислить точную частоту нужной гармоники, как w 0 – w гет, и вычесть её из исходного сигнала для подавления эффекта растекания спектра.
Иллюстрация изменения спектра в зависимости от частоты гетеродина показана ниже.


Рис. 6. Вид амплитудного спектра в зависимости от частоты гетеродина.

Будем повторять описанные процедуры до тех пор, пока не вырежем все присутствующие гармоники, и спектр не будет напоминать нам спектр белого шума.

Затем, надо оценить СКО белого шума. Хитростей здесь нет: можно просто воспользоваться формулой для вычисления СКО:

Автоматизируй это

Пришло время для автоматизации выделения гармоник. Повторим ещё разочек алгоритм:

1. Ищем глобальный пик амплитудного спектра, выше некоторого порога k.
1.1 Если не нашли, заканчиваем
2. Варируя частоту гетеродина, ищем такое значение частоты, при которой будет достигаться максимум некоторого локального отношения сигнал/шум в некоторой окрестности пика
3. При необходимости, округляем значения амплитуды и фазы.
4. Вычитаем из сигнала гармонику с найденной частотой, амплитудой и фазой за вычетом частоты гетеродина.
5. Переходим к пункту 1.

Алгоритм не сложный, и единственный возникающий вопрос - откуда же брать значения порога, выше которого будем искать гармоники?
Для ответа на этот вопрос, следует оценить уровень шума еще до вырезания гармоник.

Построим функцию распределения (привет, мат. cтатистика), где по оси абсцисс будет амплитуда гармоник, а по оси ординат - количество гармоник, не превышающих по амплитуде это самое значение аргумента. Пример такой построенной функции:


Рис. 7. Функция распределения гармоник.

Теперь построим еще и функцию - плотность распределения. Т.е., значения конечных разностей от функции распределения.


Рис. 8. Плотность функции распределения гармоник.

Абсцисса максимума плотности распределения и является амплитудой гармоники, встречающейся в спектре наибольшее число раз. Отойдем от пика вправо на некоторое расстояние, и будем считать абсциссу этой точки оценкой уровня шума в нашем спектре. Вот теперь можно и автоматизировать.

Посмотреть на кусок кода, детектирующий гармоники в составе сигнала

public ArrayList detectHarmonics() { SignalCutter cutter = new SignalCutter(source, new Signal(source)); SynthesizableComplexExponent heterodinParameter = new SynthesizableComplexExponent(); heterodinParameter.setProperty("frequency", 0.0); Signal heterodin = new Signal(source.getLength()); Signal heterodinedSignal = new Signal(cutter.getCurrentSignal()); Spectrum spectrum = new Spectrum(heterodinedSignal); int harmonic; while ((harmonic = spectrum.detectStrongPeak(min)) != -1) { if (cutter.getCuttersCount() > 10) throw new RuntimeException("Unable to analyze signal! Try another parameters."); double heterodinSelected = 0.0; double signalToNoise = spectrum.getRealAmplitude(harmonic) / spectrum.getAverageAmplitudeIn(harmonic, windowSize); for (double heterodinFrequency = -0.5; heterodinFrequency < (0.5 + heterodinAccuracy); heterodinFrequency += heterodinAccuracy) { heterodinParameter.setProperty("frequency", heterodinFrequency); heterodinParameter.synthesizeIn(heterodin); heterodinedSignal.set(cutter.getCurrentSignal()).multiply(heterodin); spectrum.recalc(); double newSignalToNoise = spectrum.getRealAmplitude(harmonic) / spectrum.getAverageAmplitudeIn(harmonic, windowSize); if (newSignalToNoise > signalToNoise) { signalToNoise = newSignalToNoise; heterodinSelected = heterodinFrequency; } } SynthesizableCosine parameter = new SynthesizableCosine(); heterodinParameter.setProperty("frequency", heterodinSelected); heterodinParameter.synthesizeIn(heterodin); heterodinedSignal.set(cutter.getCurrentSignal()).multiply(heterodin); spectrum.recalc(); parameter.setProperty("amplitude", MathHelper.adaptiveRound(spectrum.getRealAmplitude(harmonic))); parameter.setProperty("frequency", harmonic - heterodinSelected); parameter.setProperty("phase", MathHelper.round(spectrum.getPhase(harmonic), 1)); cutter.addSignal(parameter); cutter.cutNext(); heterodinedSignal.set(cutter.getCurrentSignal()); spectrum.recalc(); } return cutter.getSignalsParameters(); }

Практическая часть

Я не претендую на звание эксперта Java, и представленное решение может быть сомнительным как по части производительности и потреблению памяти, так и в целом философии Java и философии ООП, как бы я ни старался сделать его лучше. Написано было за пару вечеров, как proof of concept. Желающие могут ознакомиться с исходным кодом на

Введение ………………………………………………………………………………….2

Механизм излучения……………………………………………………………………..3

Распределение энергии в спектре……………………………………………………….4

Виды спектров…………………………………………………………………………….6

Виды спектральных анализов……………………………………………………………7

Заключение………………………………………………………………………………..9

Литература……………………………………………………………………………….11

Введение

Спектр – это разложение света на составные части, лучи разных цветов.

Метод исследования химического состава различных веществ по их линейчатым спектрам испускания или поглощения называют спектральным анализом. Для спектрального анализа требуется ничтожное количество вещества. Быстрота и чувствительность сделали этот метод незаменимым как в лабораториях, так и в астрофизике. Так как каждый химический элемент таблицы Менделеева излучает характерный только для него линейчатый спектр испускания и поглощения, то это дает возможность исследовать химический состав вещества. Впервые его попробовали сделать физики Кирхгоф и Бунзен в 1859 году, соорудив спектроскоп. Свет пропускался в него через узкую щель, прорезанную с одного края подзорной трубы (эта труба с щелью называется коллиматор). Из коллиматора лучи падали на призму, накрытую ящиком, оклеенным изнутри черной бумагой. Призма отклоняла в сторону лучи, которые шли из щели. Получался спектр. После этого завесили окно шторой и поставили у щели коллиматора зажженную горелку. В пламя свечи вводили поочередно кусочки различных веществ, и смотрели через вторую подзорную трубу на получающийся спектр. Оказывалось, что раскаленные пары каждого элемента давали лучи строго определенного цвета, и призма отклоняла эти лучи на строго определенное место, и ни один цвет поэтому не мог замаскировать другой. Это позволило сделать вывод, что найден радикально новый способ химического анализа – по спектру вещества. В 1861 Кирхгоф доказал на основе этого открытия присутствие в хромосфере Солнца ряда элементов, положив начало астрофизике.

Механизм излучения

Источник света должен потреблять энергию. Свет - это электромагнитные волны с длиной волны 4*10 -7 - 8*10 -7 м. Электромагнитные волны излучаются при ускоренном движении заряженных частиц. Эти заряженные частицы входят в состав атомов. Но, не зная, как устроен атом, ничего достоверного о механизме излучения сказать нельзя. Ясно лишь, что внутри атома нет света так же, как в струне рояля нет звука. Подобно струне, начинающей звучать лишь после удара молоточка, атомы рождают свет только после их возбуждения.

Для того чтобы атом начал излучать, ему необходимо передать энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне.

Тепловое излучение. Наиболее простой и распространенный вид излучения - тепловое излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов или (молекул) излучающего тела. Чем выше температура тела, тем быстрее движутся атомы. При столкновении быстрых атомов (молекул) друг с другом часть их кинетической энергии превращается в энергию возбуждения атомов, которые затем излучают свет.

Тепловым источником излучения является Солнце, а также обычная лампа накаливания. Лампа очень удобный, но малоэкономичный источник. Лишь примерно 12% всей энергии, выделяемой в лампе электрическим током, преобразуется в энергию света. Тепловым источником света является пламя. Крупинки сажи раскаляются за счет энергии, выделяющейся при сгорании топлива, и испускают свет.

Электролюминесценция. Энергия, необходимая атомам для излучения света, может заимствоваться и из нетепловых источников. При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Быстрые электроны испытывают соударения с атомами. Часть кинетической энергии электронов идет на возбуждение атомов. Возбужденные атомы отдают энергию в виде световых волн. Благодаря этому разряд в газе сопровождается свечением. Это и есть электролюминесценция.

Катодолюминесценция. Свечение твердых тел, вызванное бомбардировкой их электронами, называют катодолюминисенцией. Благодаря катодолюминесценции светятся экраны электронно-лучевых трубок телевизоров.

Хемилюминесценция. При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света. Источник света остается холодным (он имеет температуру окружающей среды). Это явление называется хемиолюминесценкией.

Фотолюминесценция. Падающий на вещество свет частично отражается, а частично поглощается. Энергия поглощаемого света в большинстве случаев вызывает лишь нагревание тел. Однако некоторые тела сами начинают светиться непосредственно под действием падающего на него излучения. Это и есть фотолюминесценция. Свет возбуждает атомы вещества (увеличивает их внутреннюю энергию), после этого они высвечиваются сами. Например, светящиеся краски, которыми покрывают многие елочные игрушки, излучают свет после их облучения.

Излучаемый при фотолюминесценции свет имеет, как правило, большую длину волны, чем свет, возбуждающий свечение. Это можно наблюдать экспериментально. Если направить на сосуд с флюоресцеитом (органический краситель) световой пучок,

пропущенный через фиолетовый светофильтр, то эта жидкость начинает светиться зелено - желтым светом, т. е. светом большей длины волны, чем у фиолетового света.

Явление фотолюминесценции широко используется в лампах дневного света. Советский физик С. И. Вавилов предложил покрывать внутреннюю поверхность разрядной трубки веществами, способными ярко светиться под действием коротковолнового излучения газового разряда. Лампы дневного света примерно в три-четыре раза экономичнее обычных ламп накаливания.

Перечислены основные виды излучений и источники, их создающие. Самые распространенные источники излучения - тепловые.

Распределение энергии в спектре

На экране за преломляющей призмой монохроматические цвета в спектре располагаются в следующем порядке: красный (имеющий наибольшую среди волн видимого света длину волны (к=7,6(10-7 м и наименьший показатель преломления), оранжевый, желтый, зеленый, голубой, синий и фиолетовый (имеющий наименьшую в видимом спектре длину волны (ф=4(10-7 м и наибольший показатель преломления). Ни один из источников не дает монохроматического света, т. е. света строго определенной длины волны. В этом нас убеждают опыты по разложению света в спектр с помощью призмы, а также опыты по интерференции и дифракции.

Та энергия, которую несет с собой свет от источника, определенным образом распределена по волнам всех длин, входящим в состав светового пучка. Можно также сказать, что энергия распределена по частотам, так как между длиной волны и частотой существует простая связь: v = c.

Плотность потока электромагнитного излучения, или интенсивность /, определяется энергией &W, приходящейся на все частоты. Для характеристики распределения излучения по частотам нужно ввести новую величину: интенсивность, приходящуюся на единичный интервал частот. Эту величину называют спектральной плотностью интенсивности излучения.

Спектральную плотность потока излучения можно найти экспериментально. Для этого надо с помощью призмы получить спектр излучения, например, электрической дуги, и измерить плотность потока излучения, приходящегося на небольшие спектральные интервалы шириной Av.

Полагаться на глаз при оценке распределения энергии нельзя. Глаз обладает избирательной чувствительностью к свету: максимум его чувствительности лежит в желто-зеленой области спектра. Лучше всего воспользоваться свойством черного тела почти полностью поглощать свет всех длин волн. При этом энергия излучения (т. е. света) вызывает нагревание тела. Поэтому достаточно измерить температуру тела и по ней судить о количестве поглощенной в единицу времени энергии.

Обычный термометр имеет слишком малую чувствительность для того, чтобы его можно было с успехом использовать в таких опытах. Нужны более чувствительные приборы для измерения температуры. Можно взять электрический термометр, в котором чувствительный элемент выполнен в виде тонкой металлической пластины. Эту пластину надо покрыть тонким слоем сажи, почти полностью поглощающей свет любой длины волны.

Чувствительную к нагреванию пластину прибора следует поместить в то или иное место спектра. Всему видимому спектру длиной l от красных лучей до фиолетовых соответствует интервал частот от v кр до у ф. Ширине соответствует малый интервал Av. По нагреванию черной пластины прибора можно судить о плотности потока излучения, приходящегося на интервал частот Av. Перемещая пластину вдоль спектра, мы обнаружим, что большая часть энергии приходится на красную часть спектра, а не на желто-зеленую, как кажется на глаз.

По результатам этих опытов можно построить кривую зависимости спектральной плотности интенсивности излучения от частоты. Спектральная плотность интенсивности излучения определяется по температуре пластины, а частоту нетрудно найти, если используемый для разложения света прибор проградуирован, т. е. если известно, какой частоте соответствует данный участок спектра.

Откладывая по оси абсцисс значения частот, соответствующих серединам интервалов Av, а по оси ординат спектральную плотность интенсивности излучения, мы получим ряд точек, через которые можно провести плавную кривую. Эта кривая дает наглядное представление о распределении энергии и видимой части спектра электрической дуги.

Спектры излучения . Спектральный состав излучения у различных ве­ществ имеет весьма разнообразный характер. Однако все спектры делятся на три типа: а) сплошной спектр; б) линейчатый спектр; в) полосатый спектр.

а) Сплошной (непрерывный) спектр . Накаленные твердые и жидкие тела и газы (при большом давлении) испускают свет, разложение которого дает сплошной спектр, в котором спектральные цвета непрерывно переходят один в другой. Характер непрерывного спектра и сам факт его существования опре­деляются не только свойствами отдельных излучающих атомов, но и вза­имодействием атомов друг с другом. Сплошные спектры одинаковы для разных веществ, и поэтому их нельзя использовать для определения состава вещества.

б) Линейчатый (атомный) спектр . Возбужденные атомы разреженных газов или паров испускают свет, разложение которого дает линейчатый спектр,состоящий из отдельных цветных линий. Каждый химический элемент имеет характерный для него линейчатый спектр. Атомы таких веществ не взаимодействуют друг с другом и излучают свет только определенных длин волн. Изолированные атомы данного химического элемента излучают строго определенные длины волн. Это позволяет по спектральным линиям судить о химическом составе источника света.

в) Молекулярный (полосатый) спектр .Спектр молекулы состоит из большого числа отдельных линий, сливающихся в полосы, четкие с одного края и размытые с другого. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом. Серии очень близких линий группируются на отдельных участках спектра и заполняют целые полосы. В 1860 г. немецкие ученые Г. Кирхгоф и Р. Бунзен, изучая спектры металлов, установили следующие факты:

1) каждый металл имеет свой спектр;

2) спектр каждого металла строго постоянен;

3) введение в пламя горелки любой соли одного и того же металла все­гда приводит к появлению одинакового спектра;

4) при внесении в пламя смеси солей нескольких металлов в спектре одновременно появляются все их линии;



5) яркость спектральных линий зависит от концентрации элемента в данном веществе.

Спектры поглощения. Если белый свет от источника, дающей сплошной спектр, пропускается через пары исследуемого вещества и затем разлагается в спектр, то на фоне сплошного спектра наблюдаются темные линии поглощения в тех же самых местах, где находились бы линии спектра испускания паров исследуемого элемента. Такие спектры получили название атомных спектров поглощения.

Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Атомы поглощают излучение лишь тех длин волн, которые они могут испускать при данной температуре.

Спектральный анализ. Явление дисперсии используется в науки и технике в виде метода определения состава вещества, получившего название спектрального анализа. В основе этого метода лежит изучение света, излучаемого или поглощаемого веществом. Спектральным анализом называется метод изучения химического состава вещества, основанный на исследовании его спектров.

Спектральные аппараты . Для получения и исследования спектров используют спектральные аппараты. Наиболее простые спектральные приборы - призма и дифракционная решетка. Более точные - спектроскоп и спектрограф.

Спектроскопом называется прибор, с помощью которого визуально исследуется спектральный состав света, испускаемого некоторым источником. Если регистрация спектра происходит на фотопластинке, то прибор называется спектрографом.

Применение спектрального анализа . Линейчатые спектры играют особо важную роль, потому что их структура прямо связана со строением атома. Ведь эти спектры создаются атомами, не испытывающими внешних воздействий. Состав сложных, главным образом органических смесей анализируется по их молекулярным спектрам.

С помощью спектрального анализа можно обнаружить данный элемент в составе сложного вещества, если даже его масса не превышает 10 -10 г. Линии, присущие данному элементу, позволяют качественно судить о его наличии. Яркость линий дает возможность (при соблюдении стандартных условий возбуждения) количественно судить о наличии того или иного элемента.

Спектральный анализ можно проводить и по спектрам поглощения. В астрофизике по спектрам можно определить многие физические ха­рактеристики объектов: температуру, давление, скорость движения, маг­нитную индукцию и др. с помощью спектрального анализа определяют химический состав руд и минералов.

Основные направления применения спектрального анализа таковы: физико-химические исследования; машиностроение, металлургия; атомная индустрия; астрономия, астрофизика; криминалистика.

Современные технологии создания новейших строительных материалов (металлопластиковые, пластиковые) непосредственно взаимосвязаны с такими фундаментальными науками как химия, физика. Данные науки используют современные методы исследования веществ. Поэтому спектральный анализ можно применять для определения химического состав состава строительных материалов по их спектрам.

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.

В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа:

    Эмиссионный спектральный анализ - физический метод, основанный на изучении эмиссионных спектров паров анализируемого вещества (спектров испускания или излучения), возникающих под влиянием сильных источников возбуждений (электрической дуги, высоковольтной искры); этот метод дает возможность определять элементный состав вещества, т. е. судить о том, какие химические элементы входят в состав данного вещества.

    Пламенная спектрофотометрия, или фотометрия пламени, являющаяся разновидностью эмиссионного спектрального анализа, основана на изучении эмиссионных спектров элементов анализируемого вещества, возникающих под влиянием мягких источников возбуждения. В этом методе анализируемый раствор распыляют в пламени. Этот метод дает возможность судить о содержании в анализируемом образце главным образом щелочных и щелочноземельных металлов, а также некоторых других элементов, например галлия, индия, таллия, свинца, марганца, меди, фосфора.

    Примечание. Кроме эмиссионной фотометрии пламени применяют абсорбнионную, называемую также атомно-абсорбционной спектроскопией или атомно-абсорбционной спектрофотометрией. Она основана на способности свободных атомов металла в газах пламени поглощать световую энергию при характерных для каждого элемента длинах волн. Этим методом можно определять сурьму, висмут, селен, цинк, ртуть и некоторые другие элементы, не определяемые методом эмиссионной фотометрии пламени.

    Абсорбционная спектроскопия основана на изучении спектров поглощения вещества, являющихся его индивидуальной характеристикой. Различают спектрофотометрический метод, основанный на определении спектра поглощения или измерении светопоглощения (как в ультрафиолетовой, так и в видимой и инфракрасной областях спектра) при строго определенной длине волны (монохроматическое излучение), которая соответствует максимуму кривой поглощения данного исследуемого вещества, а также фотоколориметрический метод, основанный на определении спектра поглощения или измерении светопоглощения в видимом участке спектра.

    В отличие от спектрофотометрии в фотоколориметрическом методе применяют «белый» свет или «белый» свет, предварительно пропущенный через широкополосные светофильтры.

    Метод анализа по спектрам комбинационного рассеяния света. В методе использовано явление, открытое одновременно советскими физиками Г. С. Ландсбергом и Л. И. Мандельштамом и индийским физиком Ч. В. Раманом. Это явление связано с поглощением веществом монохроматического излучения и последующим испусканием нового излучения, отличающегося длиной волны от поглощенного.

    Турбидиметрия основана на измерении интенсивности света, поглощаемого неокрашенной суспензией твердого вещества. В турбидиметрии интенсивность света, поглощенного раствором или прошедшего через него, измеряют так же, как в фотоколориметрии окрашенных растворов.

    Нефелометрия основана на измерении интенсивности света, отраженного или рассеянного окрашенной или неокрашенной суспензией твердого вещества (взвешенного в данной среде осадка).

    Люминесцентный, или флуоресцентный метод анализа основан на измерении интенсивности излучаемого веществами видимого света (флуоресценции) при облучении их ультрафиолетовыми лучами.

10)К оптическим методам анализа также относятся рефрактометрический метод, основанный на измерении коэффициента преломления, и полярометрический, основанный на изучении вращения плоскости поляризации.

Тёмные линии на спектральных полосках были замечены давно, но первое серьёзное исследование этих линий было предпринято только в 1814 году Йозефом Фраунгофером. В его честь эффект получил название «Фраунгоферовы линии». Фраунгофер установил стабильность положения линий, составил их таблицу (всего он насчитал 574 линии), присвоил каждой буквенно-цифровой код. Не менее важным стало его заключение, что линии не связаны ни с оптическим материалом, ни с земной атмосферой, но являются природной характеристикой солнечного света. Аналогичные линии он обнаружил у искусственных источников света, а также в спектрах Венеры и Сириуса.

Вскоре выяснялось, что одна из самых отчётливых линий всегда появляется в присутствии натрия. В 1859 году Г. Кирхгоф и Р. Бунзен после серии экспериментов заключили: каждый химический элемент имеет свой неповторимый линейчатый спектр, и по спектру небесных светил можно сделать выводы о составе их вещества. С этого момента в науке появился спектральный анализ, мощный метод дистанционного определения химического состава.

Для проверки метода в 1868 году Парижская академия наук организовала экспедицию в Индию, где предстояло полное солнечное затмение. Там учёные обнаружили: все тёмные линии в момент затмения, когда спектр излучения сменил спектр поглощения солнечной короны, стали, как и было предсказано, яркими на тёмном фоне.

Природа каждой из линий, их связь с химическими элементами выяснялись постепенно. В 1860 году Кирхгоф и Бунзен при помощи спектрального анализа открыли цезий, а в 1861 году - рубидий. А гелий был открыт на Солнце на 27 лет ранее, чем на Земле (1868 и 1895 годы соответственно).

Принцип работы

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10-30 мг), необходимого для анализа на большое число элементов.

Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000-10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

Применение

В последнее время, наибольшее распространение получили эмиссионные и масс-спектрометрические методы спектрального анализа, основанные на возбуждении атомов и их ионизации в аргоновой плазме индукционных разрядов, а также в лазерной искре.

Спектральный анализ - чувствительный метод и широко применяется в аналитической химии, астрофизике, металлургии, машиностроении, геологической разведке и других отраслях науки.

В теории обработки сигналов, спектральный анализ также означает анализ распределения энергии сигнала (например, звукового) по частотам, волновым числам и т. п.

Задумывались ли вы над тем, откуда мы знаем о свойствах далёких небесных тел?

Наверняка вам известно о том, что таким знаниям мы обязаны спектральному анализу. Однако нередко мы недооцениваем вклад этого метода в само понимание . Появления спектрального анализа перевернуло многие устоявшиеся парадигмы о строении и свойствах нашего мира.

Благодаря спектральному анализу мы имеем представление о масштабе и величии космоса. Благодаря нему мы перестали ограничивать Вселенную Млечным Путём. Спектральный анализ открыл нам великое разнообразие звезд, рассказал об их рождении, эволюции и смерти. Этот метод лежит в основе практически всех современных и даже грядущих астрономических открытий.

Узнать о недосягаемом

Ещё два столетия назад было принято считать, что химических состав планет и звезд навсегда останется для нас загадкой. Ведь в представлении тех лет космические объекты всегда останутся для нас недоступными. Следовательно, мы никогда не получим пробного образца какой-либо звезды или планеты и никогда не узнаем об их составе. Открытие спектрального анализа полностью опровергло это заблуждение.

Спектральный анализ позволяет дистанционно узнать о многих свойствах далёких объектов. Естественно, без такого метода современная практическая астрономия просто бессмысленна.

Линии на радуге

Темные линии на спектре Солнца заметил ещё в 1802 году изобретатель Волластон. Однако сам первооткрыватель особо не зациклился на этих линиях. Их обширное исследование и классификацию произвел в 1814 году Фраунгофер. В ходе своих опытов он заметил, что своим набором линий обладает Солнце, Сириус, Венера и искусственные источники света. Это означало, что эти линии зависят исключительно от источника света. На них не влияет земная атмосфера или свойства оптического прибора.

Природу этих линий в 1859 открыл немецкий физик Кирхгоф вместе с химиком Робертом Бунзеном. Они установили связь между линиями в спектре Солнца и линиями излучения паров различных веществ. Так они сделали революционное открытие о том, что каждый химический элемент обладает своим набором спектральных линий. Следовательно, по излучению любого объекта можно узнать о его составе. Так был рождён спектральный анализ.

В ходе дальнейших десятилетий благодаря спектральному анализу были открыты многие химические элементы. В их число входит гелий, который был сначала обнаружен на Солнце, за что и получил своё название. Поэтому изначально он считался исключительно солнечным газом, пока через три десятилетия не был обнаружен на Земле.

Три вида спектра

Чем же объясняется такое поведение спектра? Ответ кроется в квантовой природе излучения. Как известно, при поглощении атомом электромагнитной энергии, его внешний электрон переходит на более высокий энергетический уровень. Аналогично при излучении – на более низкий. Каждый атом имеет свою разницу энергетических уровней. Отсюда и уникальная частота поглощения и излучения для каждого химического элемента.

Именно на этих частотах излучает и испускает газ. В тоже время твёрдые и жидкие тела при нагревании испускают полный спектр, независящий от их химического состава. Поэтому получаемый спектр подразделяется на три типа: непрерывный, линейчатый спектр и спектр поглощения. Соответственно, непрерывный спектр излучают твёрдые и жидкие тела, линейчатый – газы. Спектр поглощения наблюдается тогда, когда непрерывное излучение поглощается газом. Другими словами, разноцветные линии на тёмном фоне линейчатого спектра будут соответствовать тёмным линиям на разноцветном фоне спектра поглощения.

Именно спектр поглощения наблюдается у Солнца, тогда как нагретые газы испускают излучение с линейчатым спектром. Это объясняется тем, что фотосфера Солнца хоть и является газом, она не прозрачна для оптического спектра. Похожая картина наблюдается у других звёзд. Что интересно, во время полного солнечного затмения спектр Солнца становится линейчатым. Ведь в таком случае он исходит от прозрачных внешних слоёв её .

Принципы спектроскопии

Оптический спектральный анализ относительно прост в техническом исполнении. В основе его работы лежит разложение излучения исследуемого объекта и дальнейший анализ полученного спектра. Используя стеклянную призму, в 1671 году Исаак Ньютон осуществил первое «официальное» разложение света. Он же и ввёл в слово «спектр» в научный обиход. Собственно, раскладывая таким же образом свет, Волластон и заметил чёрные линии на спектре. На этом принципе работают и спектрографы.

Разложение света может также происходить с помощью дифракционных решёток. Дальнейший анализ света можно производить самыми различными методами. Изначально для этого использовалась наблюдательная трубка, затем – фотокамера. В наши дни получаемый спектр анализируется высокоточными электронными приборами.

До сих пор речь шла об оптической спектроскопии. Однако современный спектральный анализ не ограничивается этим диапазоном. Во многих областях науки и техники используется спектральный анализ практически всех видов электромагнитных волн – от радио до рентгена. Естественно, такие исследования осуществляются самыми различными методами. Без различных методов спектрального анализа мы бы не знали современной физики, химии, медицины и, конечно же, астрономии.

Спектральный анализ в астрономии

Как отмечалось ранее, именно с Солнца началось изучение спектральных линий. Поэтому неудивительно, что исследование спектров сразу же нашло своё применение в астрономии.

Разумеется, первым делом астрономы принялись использовать этот метод для изучения состава звезд и других космических объектов. Так у каждой звезды появился свой спектральный класс, отражающий температуру и состав их атмосферы. Также стали известны параметры атмосферы планет солнечной системы. Астрономы приблизились к пониманию природы газовых туманностей, а также , и многих других небесных объектов и явлений.

Однако с помощью спектрального анализа можно узнать не только о качественном составе объектов.

Измерить скорость

Эффект Доплера в астрономииЭффект Доплера в астрономии

Эффект Доплера был теоретически разработан австрийским физиком в 1840 году, в честь которого он и был назван. Этот эффект можно пронаблюдать, прислушиваясь к гудку проезжающего мимо поезда. Высота гудка приближающегося поезда будет заметно отличаться от гудка отдаляющегося. Примерно таким образом Эффект Доплера и был доказан теоретически. Эффект заключается в том, что для наблюдателя длина волны движущегося источника искажается. Она увеличивается при удалении источника и уменьшается при приближении. Аналогичным свойством обладают и электромагнитные волны.

При отдалении источника всё темные полосы на спектре его излучения смещаются к красной стороне. Т.е. все длины волн увеличиваются. Точно также при приближении источника они смещаются к фиолетовой стороне. Таким образом стал отличным дополнением к спектральному анализу. Теперь по линиям в спектре можно было узнать то, что раньше казалось невозможным. Измерить скорости космических объекта, рассчитать орбитальные параметры двойных звёзд, скорости вращения планет и многое другое. Особую роль эффект «красного смещения» произвёл в космологии.

Открытие американского учёного Эдвина Хаббла сравнимо с разработкой Коперником гелиоцентрической системы мира. Исследуя яркость цефеид в различных туманностях, он доказал, что многие из них расположены намного дальше Млечного Пути. Сопоставив полученные расстояния с спектров галактик, Хаббл открыл свой знаменитый закон. Согласно нему, расстояние до галактик пропорционально скорости их удаления от нас. Хотя его закон несколько разнится с современными представлениями, открытие Хаббла расширило масштабы Вселенной.

Спектральный анализ и современная астрономия

Сегодня без спектрального анализа не происходит практически ни одного астрономического наблюдения. С его помощью открывают новые экзопланеты и расширяют границы Вселенной. Спектрометры несут на себе марсоходы и межпланетные зонды, космические телескопы и исследовательские спутники. Фактически без спектрального анализа не было бы современной астрономии. Мы так и дальше бы вглядывались пустой безликий свет звёзд, о котором не знали бы ничего.

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса