Подпишись и читай
самые интересные
статьи первым!

Волновая теория распространения света. Классическая электромагнитная теория света

Чтобы лучше понять механизм волны, рассмотрим опять идеализированный эксперимент. Предположим, что огромное пространство сплошь заполнено водой, или воздухом, или какой-либо другой «средой». Где-то в центре имеется шар (рис. 40). В начале эксперимента никакого движения нет вовсе. Вдруг шар начинает ритмически «дышать», расширяясь и сжимаясь в объёме, однако всё время оставаясь сферическим по форме. Что происходит в среде? Начнём рассмотрение в тот момент, когда шар начинает расширяться. Частицы среды, находящиеся в непосредственной близости к шару, отталкиваются, так что плотность прилегающего к шару слоя воды или воздуха увеличивается против своего нормального значения. Точно так же, когда шар сжимается, то плотность той части среды, которая непосредственно окружает шар, будет уменьшаться. Эти изменения плотности распространяются во всей среде. Частицы, составляющие среду, проделывают лишь малые колебания, но движение в целом - это движение распространяющейся волны. Существенно новым здесь является то, что впервые мы рассматриваем движение чего-то, что есть не вещество, а энергия, распространяющаяся в веществе.

Используя пример пульсирующего шара, мы можем ввести два общих физических понятия, важных для характеристики волн. Первое - это скорость, с которой распространяется волна. Она будет зависеть от среды и будет различна, например, для воды и воздуха. Второе понятие - длина волны - это расстояние от углубления одной волны до углубления следующей или же расстояние от гребня одной волны до гребня следующей. Морские волны имеют бо́льшую длину волны, чем волны на реке. В наших волнах, образующихся благодаря пульсации шара, длина волны - это расстояние, взятое в некоторый определённый момент между двумя соседними шаровыми слоями, у которых одновременно плотность имеет максимальное или минимальное значение. Очевидно, что это расстояние зависит не только от среды. Большое влияние будет, конечно, иметь быстрота пульсации шара; так, длина волны будет короче, если пульсация становится быстрее, и длиннее, если пульсация медленнее.

Это понятие волны оказывается очень удачным в физике. Оно является определённо механическим понятием. Явление сводится к движению частиц, которые, согласно кинетической теории, образуют вещество. Таким образом, всякая теория, которая употребляет понятие волны, может, вообще говоря, считаться механической теорией. В частности, объяснение акустических явлений существенно опирается на это понятие. Колеблющиеся тела, например, такие, как голосовые связки или скрипичные струны, являются источниками звуковых волн, которые распространяются в воздухе, аналогично тому как это имеет место для волн, образующихся от пульсирующего шара. Таким образом, с помощью понятия волны можно все акустические явления свести к механическим.

Уже было подчёркнуто, что мы должны отличать друг от друга движение частиц и движение самой волны, которая является состоянием среды. Оба движения совершенно различны, но очевидно, что в нашем примере пульсирующего шара оба движения происходят вдоль одной и той же прямой. Частицы среды колеблются в небольших пределах, и плотность увеличивается и уменьшается периодически в соответствии с этим движением. Направление, в котором распространяются волны, и направление, вдоль которого совершаются колебания, одно и то же. Волны этого типа называются продольными . Но является ли этот тип волн единственным? Для наших дальнейших рассуждений важно ясно представить себе возможность другого типа волны, называемой поперечной.

Изменим наш предыдущий пример. Пусть мы по-прежнему имеем шар, но он погружён в среду другого рода: вместо воздуха или воды взято нечто вроде студня или желе. Более того, шар больше не пульсирует, а поворачивается на небольшой угол сначала в одном направлении, а затем в обратном, всегда в одном и том же ритме и вокруг определённой оси (рис. 41). Желе прилипает к шару, и прилипающие частицы вынуждены повторять его движение. Эти частицы вынуждают частицы, расположенные немного дальше, повторять то же движение и т. д., так что в среде возникает волна. Если мы помним о различии между движением среды и движением волны, то мы видим, что в данном случае они явно не совпадают. Волна распространяется в направлении радиуса шара, а частицы среды движутся перпендикулярно к этому направлению. Следовательно, мы создали поперечную волну.

Волны, распространяющиеся на поверхности воды, поперечны. Плавающая пробка движется вверх и вниз, а волна распространяется вдоль горизонтальной плоскости. С другой стороны, звуковые волны дают нам наиболее известный пример продольных волн.

Ещё одно замечание: волна, созданная пульсирующим или колеблющимся в однородной среде шаром, - это сферическая волна . Она называется так потому, что в любой данный момент все точки среды, размещающиеся на любой сфере, окружающей источник, ведут себя одинаковым образом. Рассмотрим часть такой сферы на большом расстоянии от источника (рис. 42). Чем дальше от источника мы берём такую часть сферы и чем меньшую часть мы берём, тем больше она похожа на часть плоскости. Не стремясь быть слишком строгими, мы можем сказать, что нет существенного различия между частью плоскости и частью сферы, радиус которой достаточно велик. Очень часто мы говорим о небольших частях сферической волны, далеко продвинувшейся от её источника, как о плоских волнах. Чем дальше мы помещаем заштрихованную на рисунке часть поверхности от центра сферы и чем меньше угол между двумя радиусами, тем более она приближается к представлению о плоской волне. Понятие плоской волны, подобно многим другим физическим понятиям, есть не больше как абстракция, которую мы можем осуществить лишь с известной степенью точности. Тем не менее это полезное понятие, и оно нам понадобится в дальнейшем.

Волновая теория света

Вспомним, почему мы прекратили описание оптических явлений. Нашей целью было ввести другую теорию света, отличную от корпускулярной, но также пытающуюся объяснить ту же область фактов. Чтобы сделать это, мы должны были прервать наш рассказ и ввести понятие волн. Теперь мы можем вернуться к нашему предмету. Первым, кто выдвинул совершенно новую теорию света, был современник Ньютона - Гюйгенс. В своём трактате о свете он писал:

«Если, кроме того, свет употребляет для своего прохождения некоторое время - что мы сейчас проверим, - то из этого следует, что это движение, сообщённое окружающей материи, следует одно за другим во времени; поэтому оно, подобно звуку, распространяется сферическими поверхностями и волнами; я называю их волнами по тому сходству, которое они имеют с волнами, образующимися на воде, когда в неё брошен камень, и представляющими собой последовательно расширяющиеся круги, хотя они и возникают от другой причины и находятся лишь на плоской поверхности».

По Гюйгенсу, свет - это волна, передача энергии, а не субстанции. Мы видели, что корпускулярная теория объясняет многие наблюдённые факты. В состоянии ли это сделать и волновая теория? Мы должны снова поставить те вопросы, на которые уже дали ответ с помощью корпускулярной теории, чтобы увидеть, может ли волновая теория ответить на них с таким же успехом. Сделаем это здесь в форме диалога между Н и Г, где Н - собеседник, убеждённый в справедливости корпускулярной теории Ньютона, а Г - собеседник, убеждённый в справедливости теории Гюйгенса. Ни тому, ни другому не разрешено применять доводы, полученные после того, как работа обоих великих мастеров была закончена.

Последняя точка зрения на природу света уже позже, в XVII в., оформилась в корпускулярную теорию света, согласно которой свет есть поток каких-то частиц, испускаемых светящимся телом.

Третья точка зрения на природу света была высказана Аристотелем. Он рассматривал свет как распространяющееся в пространстве (в среде) действие или движение. Мнение Аристотеля в его время мало кто разделял. Но в дальнейшем, опять же в XVII в., его точка зрения получила развитие и положила начало волновой теории света.

К середине XVII века накопились факты, которые толкали научную мысль за пределы геометрической оптики. Одним из первых ученых, подтолкнувшим научную мысль к теории волновой природы света, был чешский ученый Марци. Его работы известны не только в области оптики, но также и в области механики и даже медицины. В 1648 им открыто явление дисперсии света.

В XVII в. в связи с развитием оптики вопрос о природе света стал вызывать все больший и больший интерес. При этом постепенно происходит образование двух противоположных теорий света: корпускулярной и волновой. Для развития корпускулярной теории света была более благоприятная почва. Действительно, для геометрической оптики представление о том, что свет есть поток особых частиц, было вполне естественным. Прямолинейное распространение света, а также законы отражения и преломления хорошо объяснялись с точки зрения этой теории.

Общее представление о строении вещества также не вступало в противоречие с корпускулярной теорией света. В то время в основе взглядов на строение вещества лежала атомистика. Все тела состоят из атомов. Между атомами существует пустое пространство. В частности, тогда считали, что межпланетное пространство является пустым. В нем и распространяется свет от небесных тел в виде потоков световых частиц. Поэтому вполне естественно, что в XVII в. было много физиков, которые придерживались корпускулярной теории света. В это же время начинает развиваться и представление о волновой природе света. Родоначальником волновой теории света можно считать Декарта.

Единство корпускулярных и волновых свойств электромагнитного излучения

Рассмотренные в данном разделе явления – излучение чёрного тела, фотоэффекта, эффект Комптона – служат доказательством квантовых (корпускулярных) представлений о свете как о потоке фотонов. С другой стороны, такие явления, как интерференция, дифракция и поляризация света, убедительно подтверждают волновую (электромагнитную) природу света. Наконец, давление и преломление света объясняются как волновой, так и квантовой теориями. Таким образом, электромагнитное излучение обнаруживает удивительное единство, казалось бы, взаимоисключающих свойств – непрерывных (волны) и дискретных (фотоны), которые взаимно дополняют друг друга.

Более детальное рассмотрение оптических явлений приводит к выводу, что свойства непрерывности, характерные для электромагнитного поля световой волны, не следует противопоставлять свойствам дискретности, характерным для фотона. Свет, обладая одновременно корпускулярными и волновыми свойствами, обнаруживает определённые закономерности в их проявлении. Так, волновые свойства света проявляются в закономерностях его распространения, интерференции, дифракции, поляризации, а корпускулярные – в процессах взаимодействия света с веществом. Чем больше длина волны, тем меньше энергия и импульс фотона, и тем труднее обнаруживаются квантовые свойства света (с этим связано, например, существование красной границы фотоэффекта). Наоборот, чем меньше длина волны, тем больше энергия и импульс фотона, и тем труднее обнаруживается волновые свойства (например, волновые свойства (дифракция) рентгеновского излучения обнаружены лишь после применения в качестве дифракционной решётки кристаллов).

Взаимосвязь между двойственными корпускулярно-волновыми свойствами света можно объяснить, если использовать, как это делает квантовая оптика, статистический подход к рассмотрению закономерностей рассмотрения света. Например, дифракция света на щели состоит в том, что при прохождении света через щель происходит перераспределение фотонов в пространстве. Так как вероятность попадания фотонов в различные точки экрана неодинакова, то и возникает дифракционная картина. Освещённость экрана пропорциональна вероятности попадания фотонов на единицу площади экрана. С другой стороны, по волновой теории, освещённость пропорциональна квадрату амплитуды световой волны той же точке экрана. Следовательно, квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотонов в данную точку.

Волновые свойства света

Дисперсия

Ньютон обратился к исследованию цветов, наблюдаемых при преломлении света, в связи с попытками усовершенствования телескопов. Стремясь получить линзы возможно лучшего качества, Ньютон убедился, что главным недостатком изображений является наличие окрашенных краёв. Исследуя окрашивание при преломлении, Ньютон сделал свои величайшие оптические открытия.

Сущность открытий Ньютона поясняется следующими опытами: свет от фонаря освещает узкое отверстие S (щель). При помощи линзы L изображение щели получается на экране MN в виде короткого белого прямоугольника S`. Поместив на пути призму P, ребро которой параллельно щели, обнаружим, что изображение щели сместится и превратится в окрашенную полоску, переходы цветов в которой от красного к фиолетовому подобны наблюдаемым в радуге. Это радужное изображение Ньютон назвал спектром.

Если прикрыть щель цветным стеклом, т. е. если направлять на призму вместо белого света цветной, изображение щели сведется к цветному прямоугольнику, располагающему на соответствующем месте спектра, т. е. в зависимости от цвета свет будет отклоняться на различные углы от первоначального изображения S`. Описанное наблюдения показывает, что лучи разного цвета различно преломляются призмой.

Это важное заключение Ньютон проверил многими опытами. Важнейший из них состоял в определении показателя преломления лучей различного цвета, выделенных из спектра. Для этой цели в экране MN, на котором получается спектр, прорезалось отверстие; перемещая экран, можно было выпустить через отверстие узкий пучок лучей того или иного цвета. Такой способ выделения однородных лучей более совершенен, чем выделение при помощи цветного стекла. Опыты обнаружили, что такой выделенный пучок, преломляясь во второй призме, уже не растягивает полоску. Такому пучку соответствует определенный показатель преломления, значение которого зависит от цвета выделенного пучка.

Описанные опыты показывают, что для узкого цветного пучка, выделенного из спектра, показатель преломления имеет вполне определенное значение, тогда как преломление белого света можно только приблизительно охарактеризовать одним каким то значением этого показателя. Сопоставляя подобные наблюдения, Ньютон сделал вывод, что существуют простые цвета, не разлагающиеся при прохождении через призму, и сложные, представляющие совокупность простых, имеющих разные показатели преломления. В частности, солнечный свет есть такая совокупность цветов, которая при помощи призмы разлагается, давая спектральное изображение щели.

Таким образом, в основных опытах Ньютона заключались два важных открытия:

Свет различного цвета характеризуется различными показателями преломления в данном веществе (дисперсия);

Белый цвет есть совокупность простых цветов.

Мы знаем в настоящее время, что разным цветам соответствуют различные длины световых волн. Поэтому первое открытие Ньютона можно сформулировать следующим образом: показатель преломления вещества зависит от длины световой волны. Обычно он увеличивается по мере уменьшения длины волны.

Дифракция

У световой волны не происходит изменения геометрической формы фронта при распространении в однородной среде. Однако если распространение света осуществляется в неоднородной среде, в которой, например, находятся непрозрачные экраны, области пространства со сравнительно резким изменением показателя преломления и т. п., то наблюдается искажение фронта волны. В этом случае происходит перераспределение интенсивности световой волны в пространстве. При освещении, например, непрозрачных экранов точечным источником света на границе тени, где, согласно законам геометрической оптики, должен был бы проходить скачкообразный переход от тени к свету, наблюдается ряд тёмных и светлых полос, часть света проникает в область геометрической тени. Эти явления относятся к дифракции света.

Итак, дифракция света в узком смысле – явление огибания светом контура непрозрачных тел и попадание света в область геометрической тени; в широком смысле – всякое отклонение при распространении света от законов геометрической оптики.

Определение Зоммерфельда: под дифракцией света понимают всякое отклонение от прямолинейного распространения, если оно не может быть объяснено как результат отражения, преломления или изгибания световых лучей в средах с непрерывно меняющимся показателем преломления.

Если в среде имеются мельчайшие частицы (туман), или показатель преломления заметно меняется на расстояниях порядка длины волны, то в этих случаях говорят о рассеянии света, и термин "дифракция" не употребляется.

Различают два вида дифракции света. Изучая дифракционную картину в точке наблюдения, находящейся на конечном расстоянии от препятствия, мы имеем дело с дифракцией Френеля. Если точка наблюдения и источник света расположены от препятствия так далеко, что лучи, падающие на препятствие, и лучи, идущие в точку наблюдения, можно считать параллельными пучками, то говорят о дифракции в параллельных лучах – дифракции Фраунгофера.

Теория дифракции рассматривает волновые процессы в тех случаях, когда на пути распространения волны имеются какие-либо препятствия.

С помощью теории дифракции решают такие проблемы, как защита от шумов с помощью акустических экранов, распространение радиоволн над поверхностью Земли, работа оптических приборов (так как изображение, даваемое объективом, – всегда дифракционная картина), измерения качества поверхности, изучение строения вещества и многие другие.

Поляризация

Явления интерференции и дифракции, послужившие для обоснования волновой природы света, не дают еще полного представления о характере световых волн. Новые черты открывает нам опыт над прохождением света через кристаллы, в частности через турмалин.

Возьмем две одинаковые прямоугольные пластинки турмалина, вырезанные так, что одна из сторон прямоугольника совпадает с определенным направлением внутри кристалла, носящим название оптической оси. Наложим одну пластинку на другую так, чтобы оси их совпадали по направлению, и пропустим через сложенную пару пластинок узкий пучок света от фонаря или солнца. Так как турмалин представляет собой кристалл буро-зеленого цвета, то след прошедшего пучка на экране представится в виде тёмно-зеленого пятнышка. Начнем поворачивать одну из пластинок вокруг пучка, оставляя вторую неподвижной. Мы обнаружим, что след пучка становится слабее, и когда пластинка повернётся на 900, он совсем исчезнет. При дальнейшем вращении пластинки проходящий пучок вновь начнет усиливаться и дойдет до прежней интенсивности, когда пластинка повернется на 1800, т. е. когда оптические оси пластинок вновь расположатся параллельно. При дальнейшем вращении турмалина пучок вновь слабеет.

Можно объяснить все наблюдающиеся явления, если сделать следующие выводы.

Световые колебания в пучке направлены перпендикулярно к линии распространения света (световые волны поперечны).

Турмалин способен пропускать световые колебания только в том случае, когда они направлены определенным образом относительно его оси.

В свете фонаря (солнца) представлены поперечные колебания любого направления и притом в одинаковой доле, так что ни одно направление не является преимущественным.

Вывод 3 объясняет, почему естественный свет в одинаковой степени проходит через турмалин при любой его ориентации, хотя турмалин, согласно выводу 2, способен пропускать световые колебания только определенного направления. Прохождение естественного света через турмалин приводит к тому, что из поперечных колебаний отбираются только те, которые могут пропускаться турмалином. Поэтому свет, прошедший через турмалин, будет представлять собой совокупность поперечных колебаний одного направления, определяемого ориентацией оси турмалина. Такой свет мы будем называть линейно поляризованным, а плоскость, содержащую направление колебаний и ось светового пучка, – плоскостью поляризации.

Теперь становится понятным опыт с прохождением света через две последовательно поставленные пластинки турмалина. Первая пластинка поляризует проходящий через неё пучок света, оставляя в нем колебания только одного направления. Эти колебания могут пройти через второй турмалин полностью только в том случае, когда направление их совпадает с направлением колебаний, пропускаемых вторым турмалином, т. е. когда его ось параллельна оси первого. Если же направление колебаний в поляризованном свете перпендикулярно к направлению колебаний, пропускаемых вторым турмалином, то свет будет полностью задержан. Если направление колебаний в поляризованном свете составляет острый угол с направлением, пропускаемым турмалином, то колебания будут пропущены лишь частично.

Квантовые свойства света

Фотоэффект

Гипотеза Планка о квантах послужила основой для объяснения явления фотоэлектрического эффекта, открытого в 1887г. немецким физиком Генрихом Герцем.

Явление фотоэффекта обнаруживается при освещении цинковой пластины, соединенной со стержнем электрометра. Если пластине и стержню передан положительный заряд, то электрометр не разряжается при освещении пластины. При сообщении пластине отрицательного электрического заряда электрометр разряжается, как только на пластину попадает ультрафиолетовое излучение. Этот опыт доказывает, что с поверхности металлической пластины под действием света могут освобождаться отрицательные электрические заряды. Измерение заряда и массы частиц, вырываемых светом, показало, что эти частицы – электроны.

Фотоэффекты бывают нескольких видов: внешний и внутренний фотоэффект, вентильный фотоэффект и ряд других эффектов.

Внешним фотоэффектом называют явление вырывания электронов из вещества под действием падающего на него света.

Внутренним фотоэффектом называют появление свободных электронов и дырок в полупроводнике в результате разрыва связей между атомами за счет энергии света, падающего на полупроводник.

Вентильным фотоэффектом называют возникновение под действием света электродвижущей силы в системе, содержащей контакт двух различных полупроводников или полупроводника и металла.

Эффект Комптона

Наиболее полно корпускулярные свойства света проявляются в эффекте Комптона. Американский физик А. Комптон (1892 – 1962), исследуя в 1923 г. рассеяние монохроматического рентгеновского излучения веществами с лёгкими атомами (парафин, бор), обнаружил, что в составе рассеянного излучения наряду с излучением первоначальной длины волны наблюдается также более длинноволновое излучение.

Эффектом Комптона называется упругое рассеяние коротковолнового электромагнитного излучения (рентгеновского и гамма-излучений) на свободных (или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.

Объяснение эффекта Комптона дано на основе квантовых представлений о природе света. Если считать, как это делает квантовая теория, что излучение имеет корпускулярную природу.

Эффект Комптона наблюдается не только на электронах, но и на других заряженных частицах, например протонах, однако из-за большой массы протона его отдача "просматривается" лишь при рассеянии фотонов очень высоких энергий.

Как эффект Комптона, так и фотоэффект на основе квантовых представлений обусловлены взаимодействием фотонов с электронами. В первом случае фотон рассеивается, во втором – поглощается. Рассеяние происходит при взаимодействии фотона со свободными электронами, а фотоэффект – со связанными электронами. Можно показать, что при столкновении фотона со свободными электронами не может произойти поглощения фотона, так как это находится в противоречии с законами сохранения импульса и энергии. Поэтому при взаимодействии фотонов со свободными электронами может наблюдаться только их рассеяние, т. е. эффект Комптона.

Выводы

Итак, свет корпускулярен в том смысле, что его энергия, импульс, масса и спин локализованы в фотонах, а не размыты в пространстве, но не в том, что фотон может находиться в данном точно определенном месте пространства. Свет ведет себя как волна в том смысле, что распространение и распределение фотонов в пространстве носят вероятный характер: вероятность того, что фотон находится в данной точке, определяется квадратом амплитуды в этой точке. Но вероятностный (волновой) характер распределения фотонов в пространстве не означает, что фотон в каждый момент времени находится в какой-то одной точке.

Таким образом, свет сочетает в себе непрерывность волн и дискретность частиц. Если учтем, что фотоны существуют только при движении (со скоростью с), то приходим к выводу, что свету одновременно присущи как волновые, так и корпускулярные свойства. Но в некоторых явлениях при определенных условиях основную роль играют или волновые, или корпускулярные свойства, и свет можно рассматривать или как волну, или как частицы (корпускулы).

Литература

Детлаф А. А., Яворский Б. М. Курс физики. М.: Высшая школа, 2000.

Трофимова Т. И. Курс физики. М.: Высшая школа 2001.

Кухлинг Х. Справочник по физике. М.: Мир 1982.

Гурский И. П. Элементарная физика. М., 1984.

Тарасов Л. В., Тарасова А. Н. Беседы о преломлении света. М.,. Наука, 1982.

3.6. Развитие представлений о природе света

Первые представления о природе света возникли у древних греков и египтян. По мере изобретения и совершенствования различных оптических приборов (параболических зеркал, микроскопа, зрительной трубы) эти представления развивались и трансформировались. В конце XVII века возникли две теории света: корпускулярная (И. Ньютон) и волновая (Р. Гук и Х. Гюйгенс).

Согласно корпускулярной теории, свет представляет собой поток частиц (корпускул), испускаемых светящимися телами. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости корпускул при переходе из одной среды в другую. Для случая преломления света на границе вакуум–среда корпускулярная теория приводила к следующему виду закона преломления:



где c – скорость света в вакууме, υ – скорость распространения света в среде. Так как n > 1 , из корпускулярной теории следовало, что скорость света в средах должна быть больше скорости света в вакууме. Ньютон пытался также объяснить появление интерференционных полос , допуская определенную периодичность световых процессов . Таким образом, корпускулярная теория Ньютона содержала в себе элементы волновых представлений.

Волновая теория, в отличие от корпускулярной, рассматривала свет как волновой процесс, подобный механическим волнам. В основу волновой теории был положен принцип Гюйгенса , согласно которому каждая точка, до которой доходит волна, становится центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени. С помощью принципа Гюйгенса были объяснены законы отражения и преломления. Рис. 3.6.1 дает представление о построениях Гюйгенса для определения направления распространения волны, преломленной на границе двух прозрачных сред.

Для случая преломления света на границе вакуум–среда волновая теория приводит к следующему выводу:



Закон преломления, полученный из волновой теории, оказался в противоречии с формулой Ньютона. Волновая теория приводит к выводу: υ < c , тогда как согласно корпускулярной теории υ > c .

Таким образом, к началу XVIII века существовало два противоположных подхода к объяснению природы света: корпускулярная теория Ньютона и волновая теория Гюйгенса. Обе теории объясняли прямолинейное распространение света, законы отражения и преломления. Весь XVIII век стал веком борьбы этих теорий. Однако в начале XIX столетия ситуация коренным образом изменилась. Корпускулярная теория была отвергнута и восторжествовала волновая теория. Большая заслуга в этом принадлежит английскому физику Т. Юнгу и французскому физику О. Френелю, исследовавшим явления интерференции и дифракции. Исчерпывающее объяснение этих явлений могло быть дано только на основе волновой теории. Важное экспериментальное подтверждение справедливости волновой теории было получено в 1851 году, когда Ж. Фуко (и независимо от него А. Физо) измерил скорость распространения света в воде и получил значение υ < c .

Хотя к середине XIX века волновая теория была общепризнана, вопрос о природе световых волн оставался нерешенным.

В 60-е годы XIX века Максвеллом были установлены общие законы электромагнитного поля, которые привели его к заключению, что свет – это электромагнитные волны . Важным подтверждением такой точки зрения послужило совпадение скорости света в вакууме с электродинамической постоянной Электромагнитная природа света получила признание после опытов Г. Герца (1887–1888 гг.) по исследованию электромагнитных волн. В начале XX века после опытов П. Н. Лебедева по измерению светового давления (1901 г.) электромагнитная теория света превратилась в твердо установленный факт.

Важнейшую роль в выяснении природы света сыграло опытное определение его скорости. Начиная с конца XVII века предпринимались неоднократные попытки измерения скорости света различными методами (астрономический метод А. Физо, метод А. Майкельсона). Современная лазерная техника позволяет измерять скорость света с очень высокой точностью на основе независимых измерений длины волны λ и частоты света ν (c = λ · ν). Таким путем было найдено значение



превосходящее по точности все ранее полученные значения более чем на два порядка.

Свет играет чрезвычайно важную роль в нашей жизни. Подавляющее количество информации об окружающем мире человек получает с помощью света. Однако, в оптике как разделе физике под светом понимают не только видимый свет , но и примыкающие к нему широкие диапазоны спектра электромагнитного излучения – инфракрасный ИК и ультрафиолетовый УФ. По своим физическим свойством свет принципиально неотличим от электромагнитного излучения других диапазонов – различные участки спектра отличаются друг от друга только длиной волны λ и частотой ν. Рис. 3.6.2. дает представление о шкале электромагнитных волн.

Для измерения длин волн в оптическом диапазоне используются единицы длины 1 нанометр (нм) и 1 микрометр (мкм):


1 нм = 10 –9 м = 10 –7 см = 10 –3 мкм.

Видимый свет занимает диапазон приблизительно от 400 нм до 780 нм или от 0,40 мкм до 0,78 мкм.

Электромагнитная теория света позволила объяснить многие оптические явления, такие как интерференция, дифракция, поляризация и т. д. Однако, эта теория не завершила понимание природы света. Уже в начале XX века выяснилось, что эта теория недостаточна для истолкования явлений атомного масштаба , возникающих при взаимодействии света с веществом. Для объяснения таких явлений, как излучение черного тела, фотоэффект, эффект Комптона и др. потребовалось введение

В физике световые явления являются оптическими, так как относятся к данному подразделу. Действия этого феномена не ограничиваются лишь тем, чтобы окружающие людей предметы были заметны. Кроме этого, солнечное освещение передает тепловую энергию в пространстве, в результате этого тела нагреваются. На основе этого были выдвинуты определенные гипотезы о природе данного явления.

Энергетический перенос осуществляется телами и волнами, распространяющимися в среде, таким образом, излучение состоит из частиц, называемыми корпускулами. Так их назвал Ньютон, после него появились новые исследователи, которые усовершенствовали эту систему, были Гюйгенс, Фуко и пр. Электромагнитная теория света была выдвинута чуть позднее Максвеллом.

Истоки и развитие теории света

Благодаря самой первой гипотезе Ньютоном была сформирована корпускулярная система, где четко разъяснялась сущность оптических явлений. Цветовые различные излучения описывались как структурные составляющие, входящие в эту теорию. Интерференцию и дифракцию объяснил ученый из Голландии Гюйгенс в XVI веке. Этот исследователь выдвинул и описал теорию света на основе волн. Однако все созданные системы были не оправданы, так как не разъясняли саму сущность и основу оптических явлений. В результате долгих поисков вопросы истинности и подлинности световых излучений, а также их сущность и основа остались нерешенными.

Спустя несколько столетий несколько исследователей под началом Фуко, Френеля начали выдвигать иные гипотезы, благодаря чему выяснилось теоретическое преимущество волн перед корпускулами. Однако и у этой теории были недостатки и недоработки. По сути, это созданное описание предполагало наличие некоего вещества, которое находится в пространстве, ввиду того, что Солнце и Земля на далеком расстоянии друг от друга. В случае, если свет свободно падает и проходит через эти объекты, следовательно, в них присутствует поперечные механизмы.

Дальнейшее становление и совершенствование теории

На основе всей этой гипотезы возникли предпосылки для создания новой теории о мировом эфире, который заполняет тела и молекулы. А с учетом особенностей этого вещества оно должно быть твердым, в результате ученые пришли к выводу, что он обладает упругими свойствами. По сути, эфир должен оказывать влияние на земной шар в пространстве, но этого не происходит. Таким образом, это вещество ничем не оправдано, кроме того, что через него струится световое излучение, и оно обладает твердостью. На основе таких противоречий данная гипотеза была поставлена под сомнение, лишена смысла и дальнейших исследований.

Труды Максвелла

Волновые свойства света и электромагнитная теория света, можно сказать, стали единым целым, когда Максвелл начал свои исследования. В ходе изучения было обнаружено, что скорость распространения указанных величин совпадают, если находятся в вакууме. В результате эмпирического обоснования, Максвеллом выдвинута и доказана гипотеза об истинной природе света, которая удачно подтверждалась годами и другими практиками, опытом. Таким образом, в позапрошлом столетии создалась электромагнитная теория света, применяющаяся и сегодня. Позже она будет признана классической.

Волновые свойства света: электромагнитная теория света

На основе новой гипотезы была выведена формула λ = c/ν, которая указывает на то, что при расчете частоты можно найти длину. Световые излучения являются электромагнитными волнами, но только в том случае, если они ощутимы для человека. Кроме того, такими можно назвать и к ним относятся с колебанием от 4·10 14 до 7,5 · 10 14 Гц. В данном диапазоне частота колебаний может варьироваться и цвет излучения разный, причем на каждом отрезке или интервале будет характерный и соответствующий для него цвет. В результате по частоте указанной величины находится длина волны в вакууме.

При расчете видно, что световое излучение может быть от 400 нм до 700 нм (фиолетовый и красный цвета). При переходе оттенок и частота сохраняются и зависят от волновой длины, которая меняется на основе скорости распространения и указывается для вакуума. Электромагнитная теория света Максвелла основана на научном обосновании, где излучение оказывает давление на составляющие тела и непосредственно на него. Правда, позже эта концепция была проверена и доказана эмпирическим путем Лебедевым.

Излучение и распределение светящихся тел по частотам колебаний не согласуется с законами, которые были выведены из волновой гипотезы. Подобное утверждение исходит из анализа состава этих механизмов. Физик из Германии Планк попытался найти объяснение такому результату. Позже он пришел к выводу, что излучение происходит в виде определенных порций - квант, затем эту массу стали называть фотоны.

В результате анализ оптических явлений привел к выводу, что световое испускание и поглощение объяснялись с помощью массового состава. В то время как те, что распространялись в среде, были разъяснены волновой теорией. Таким образом, чтобы полностью изучить и описать данные механизмы требуется новая концепция. Причем новая система должна была объяснять и объединять различные свойства света, то есть корпускулярные и волновые.

Развитие квантовой теории

В результате труды Бора, Эйнштейна, Планка были положены в основу этой усовершенствованной структуры, которая была названа квантовой. На сегодняшний день эта система описывает и поясняет не только классическую электромагнитную теорию света, но и другие разделы физического знания. По существу, новая концепция легла в основу множества свойств и явлений, протекающих в телах и пространстве, а кроме этого, огромное количество ситуаций предсказала и разъяснила.

По существу, электромагнитная теория света кратко описывается как явление, в основе которого присутствуют различные доминанты. Например, корпускулярные и волновые переменные оптики имеют связь и выражаются формулой Планка: ε = ℎν, здесь присутствуют квантовая энергия, электромагнитного излучения колебания и их частота, постоянный коэффициент, который не меняется ни для каких явлений. Согласно новой теории, оптическая система с определенными варьирующимися механизмами состоит из фотонов с силой. Таким образом, теорема звучит так: квантовая энергия прямо пропорциональна электромагнитному излучению и его частотным колебаниям.

Планк и его труды

Аксиома c = νλ, в результате формулы Планка производится ε = hc / λ, так можно прийти к выводу, что указанное выше явление - обратное длине волны при оптическом влиянии в вакууме. Опыты, проведенные в закрытом пространстве, показали, что пока существует фотон, он будет двигаться по определенной скорости и замедлить свой темп не сможет. Однако поглощается частицами веществ, которые встретятся ему на пути, в результате происходит взаимообмен, и он исчезает. В отличие от протонов и нейтронов не имеет массы покоя.

Электромагнитные волны и теории света до сих пор не поясняют противоречивые явления, например, в одной системе будут ярко выраженные свойства, а в другой корпускулярные, но, тем не менее, все они объединены излучением. На основе концепции квант существующие свойства присутствуют в самой природе оптической структуры и в общей материи. То есть частицы обладают волновыми свойствами, а эти в свою очередь корпускулярными.

Световые источники

Основы электромагнитной теории света опираются на аксиому, которая гласит: молекулы, атомы тел создают видимое излучение, которое называется источником оптического явления. Существует огромное количество предметов, производящих этот механизм: лампа, спички, трубки и др. Причем каждую подобную вещь можно условно разделить на равнозначные группировки, которые определяются по способу накала частиц, реализующих излучение.

Структурированные источники света

Изначальное происхождение свечения происходит из-за возбуждения атомов и молекул ввиду хаотического движения в теле частиц. Это возникает, потому что температура достаточно высока. Излучаемая энергия повышается за счет того, что их внутренняя сила возрастает и накаляется. Такие предметы относятся к первой группе источников света.

Накаливание атомов и молекул возникает на основе летящих частиц веществ, причем это не минимальное скопление, а целый поток. Температура здесь не играет особой роли. Такое свечение называют люминесценцией. То есть оно всегда возникает ввиду того, что тело поглощает внешнюю энергию, вызванную электромагнитным излучением, химической реакцией, протонами, нейтронами и пр.

А источники называются люминесцентными. Определение электромагнитной теории света этой системы звучит следующим образом: если после поглощения телом энергии проходит некоторое время, измеримое опытным путем, и затем оно производит излучение не из-за температурных показателей, следовательно, оно относится к вышеуказанной группе.

Детальный разбор люминесценции

Однако подобные характеристики не полностью описывают эту группу, ввиду того, что она обладает несколькими видами. По сути, после поглощения энергии тела пребывают в накаливании, затем испускают излучение. Время возбуждения, как правило, варьируется и зависит от множества параметров, зачастую не превышает нескольких часов. Таким образом, способ накаливания может быть нескольких типов.

Разреженный газ начинает испускать излучение после того, как через него прошел прямой ток. Такой процесс называется электролюминесценцией. Наблюдается в полупроводниках и светодиодах. Происходит это таким образом, что пропускание тока дает рекомбинацию электронов и дырок, за счет этого механизма и возникает оптическое явление. То есть, преобразовывается энергия из электрической в световую, обратный внутренний фотоэффект. Кремний считается инфракрасным излучателем, а фосфид галлия и карбид кремния реализуют видимое явление.

Сущность фотолюминесценции

Тело поглощает свет, а также твердые вещества и жидкости излучают длинные волны, которые отличаются по всем параметрам от изначальных фотонов. Для накала используется ультрафиолетовый накал. Данный способ возбуждения называется фотолюминесценцией. Возникает оно в видимой части спектра. Излучение трансформируется, именно этот факт был доказан английским ученым Стоксом в XVIII веке и теперь является аксиоматическим правилом.

Квантовая и электромагнитная теория света описывают концепцию Стокса следующим образом: молекула поглощает порцию излучения, затем передает ее другим частицам в процессе теплообмена, остатки энергии испускают оптическое явление. При формуле hν = hν 0 - A, выходит, что частота излучения люминесценции ниже поглощенной частоты, в результате получается, что длина волны больше.

Временные рамки распространения оптического явления

Электромагнитная теория света и теорема классической физики указывают на факт того, что скорость указанной величины велика. Ведь расстояние от Солнца до Земли он проходит за несколько минут. Множество ученых пыталось анализировать прямую линию времени и то, как проходит свет через одно расстояние к другому, но им в основе так это и не удалось.

По сути, электромагнитная теория света основана на скорости, которая является главной константой физики, но при этом не предсказуемой, а возможной. Были созданы формулы, и после проверок выяснилось, что распространение и движение электромагнитных волн зависит от среды пребывания. Причем, определяется эта переменная абсолютным показателем преломления пространства, где размещается указанная величина. В любое вещество способно проникнуть световое излучение, в результате магнитная проницаемость понижается, ввиду этого скорость оптики определяется диэлектрической константой.

Вместе с тем Ньютон с вниманием относился и к высказанной нидерландским ученым X. Гюйгенсом волновой теории света (1690). Гюйгенс предположил, что пространство наполнено неким веществом - эфиром, и построил, опираясь на эфир, волновую теорию света. Она отлично объяснила множество разных оптических явлений и даже предсказала такие, которые потом были открыты, - словом, оказалась хорошей гипотезой. За одним исключением: эфир пришлось снабдить столь противоречивыми свойствами, что разум отказывался верить. С одной стороны, совершенная бесплотность (дабы не мешать движению планет), а с другой - упругость, в тысячи раз превышающая упругость самой лучшей стали (иначе не будет распространяться с нужной скоростью свет). Кунафин М. С. Концепции современного естествознания: Учебное пособие. Изд-е. - Уфа, 2003. - с.149

Пользуясь представлением об упругом светоносном эфире, Гюйгенс рассматривал распространение в нем не волн, а неких импульсов. И тем не менее он установил волновой принцип, который теперь носит его имя и входит в современные учебники. Недостаточное понимание этой природы, как известно, не позволило Гюйгенсу объяснить его же собственные опыты по двойному лучепреломлению, в которых пучок света пропускался последовательно через два кристалла. Гюйгенс наблюдал, как вышедшие из первого кристалла обыкновенный и необыкновенный лучи вели себя во втором кристалле по-разному -- в зависимости от взаимной ориентации кристаллов. В одних случаях каждый из лучей снова «расщеплялся» на два луча. В других случаях нового «расщепления» лучей не происходило; при этом вышедший из первого кристалла обыкновенный луч либо оставался во втором кристалле обыкновенным лучом, либо (при иной ориентации кристаллов) вел себя как необыкновенный луч. Аналогично вел себя и необыкновенный луч, вышедший из первого кристалла. Гюйгенс не смог объяснить полученных результатов, так как не знал (и не решался даже предположить), что световые волны поперечны. Его опытов было вполне достаточно для открытия поляризации света. Достаточно, но при условии более глубокого понимания природы света. Такого понимания не было, и поэтому открытие поляризации не состоялось (поляризация была открыта лишь более чем через сто лет). Тарасов Л.В. Введение в квантовую оптику. - М.: Высшая школа, 1987. -с. 10

Интерес к оптическим проблемам в начале XIX в. был продиктован развитием учения об электричестве, химии и паротехнике. Казалось очень вероятным, что в природе теплоты, света и электричества есть нечто общее. Открытие и изучение фотохимических реакций, химических реакций с выделением теплоты и света, тепловых и химических действий электричества -- все это заставляло думать, что изучение света окажется полезным для решения важных научных и практических задач.

В XVIII в. подавляющее большинство ученых придерживалось корпускулярной теории света, которая хорошо объясняла многие, но не все оптические явления. В начале XIX в. в поле зрения физиков попадают вопросы интерференции, дифракции и поляризации света, которые неудовлетворительно объяснялись корпускулярной теорией. Это приводит к возрождению, казалось, забытых идей волновой оптики. В оптике происходит настоящая научная революция, закончившаяся победой волновой теории света над корпускулярной.

Первым в защиту волновой теории света выступил в 1799 г. английский врач Т. Юнг, разносторонне образованный человек, занимавшийся исследованиями в области математики, физики, механики, ботаники и т.д., обладавший обширными знаниями в литературе, истории, многое сделавший для расшифровки египетских иероглифов. Юнг критиковал корпускулярную теорию света, указывая на явления, которые нельзя объяснить с ее позиций, в частности, одинаковые скорости световых корпускул, выбрасываемых слабыми и сильными источниками, а также то обстоятельство, что при переходе из одной среды в другую одна часть лучей постоянно отражается, а другая постоянно преломляется. Юнг предложил рассматривать свет как колеблющееся движение частиц эфира: «...Светоносный эфир, в высокой степени разреженный и упругий, заполняет Вселенную... Колебательные движения возбуждаются в этом эфире каждый раз, как тело начинает светиться». Волновую природу света он обосновывал прежде всего явлением интерференции света.

Опыт, демонстрирующий явление интерференции света, состоит в следующем. В экране прокалывают два маленьких отверстия на близком расстоянии друг от друга и освещают его солнечным светом, проходящим через отверстие в окне. За этим экраном помещают второй экран, на который падают два световых конуса, образовавшиеся за первым экраном. В том месте, где эти конусы перекрываются, на втором экране видны светлые и темные полосы. От присоединения света к свету образуется темнота! Юнг правильно предположил, что темные полосы образуются там, где гребни световых волн поглощают друг друга. Если закрыть одно отверстие, то полосы пропадают, а на экране видны только дифракционные кольца. Измеряя расстояние между кольцами, Юнг определил длины волн красного, фиолетового и некоторых других цветов. Он рассмотрел и некоторые случаи дифракции света. Появление дифракционных полос он объяснял интерференцией двух волн: прошедшей прямо и отраженной от края препятствия. Кроме того, он высказал важную догадку о том, что явление поляризации света возможно только в том случае, если световая волна является поперечной, а не продольной.

Хотя работы Юнга свидетельствовали в пользу волновой теории света, они тем не менее не привели к отказу от корпускулярной теории, которая продолжала господствовать в оптике.

В 1815 г. против корпускулярной теории выступил французский ученый О.Френель. После окончания Политехнической школы в Париже он работал в провинции инженером по прокладке и ремонту дорог, а в свободное время занимался научными исследованиями. Заинтересовался вопросами оптики и самостоятельно пришел к убеждению, что справедлива не корпускулярная, а волновая теория света. В 1818 г. Френель объединил полученные результаты и изложил их в работе о дифракции света, представленной на конкурс, объявленный Французской академией наук.

Работу Френеля рассматривала специальная комиссия в составе Ж.Б. Био, Д.Ф. Араго, П.С. Лапласа, Ж.Л. Гей-Люссака и С.Д. Пуассона -- сторонников корпускулярной теории. Но результаты работы Френеля настолько соответствовали эксперименту, что просто отвергнуть ее было невозможно. Пуассон заметил, что из теории Френеля можно вывести следствие, противоречащее здравому смыслу: как будто в центре тени от круглого экрана должно наблюдаться светлое пятно. Эту «несообразность» подтвердил опыт: возражение превратилось в свою противоположность. Комиссия в конце концов признала правильность результатов волновой теории Френеля и присудила ему премию. Однако теория Френеля еще не стала общепринятой, и большинство физиков продолжало придерживаться старых взглядов. свет волновой корпускулярный планк

Заключительным аккордом в борьбе корпускулярной и волновой теорий света явились результаты измерения скорости света в воде. Согласно корпускулярной теории, скорость света в оптически более плотной среде должна быть больше, чем в оптически менее плотной, а по волновой теории -- наоборот. В 1850 г. французские физики Ж.Б.Л. Фуко и А.И.Л. Физо, измеряя скорость света с помощью вращающегося зеркала, показали, что скорость света в воде меньше, чем в воздухе, и тем самым окончательно подтвердили волновую теорию света. К середине XIX в. приверженцев корпускулярной теории света осталось уже мало. Найдыш В.М. Концепции современного естествознания: Учебник. -- Изд. 2-е, перераб. и доп. - М.: Альфа-М; ИНФРА-М, 2004. - с.228

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса