Подпишись и читай
самые интересные
статьи первым!

Как считать пределы. Предел последовательности и функции. Теоремы о пределах

Понятия пределов последовательностей и функций. Когда требуется найти предел последовательности, это записывают следующим образом: lim xn=a. В такой последовательности последовательности xn стремится к a, а n к бесконечности. Последовательность обычно представляют в виде ряда, например:
x1, x2, x3...,xm,...,xn... .
Последовательности подразделяются на возрастающие и убывающие. Например:
xn=n^2 - возрастающая последовательность
yn=1/n - последовательность
Так, например, предел последовательности xn=1/n^ :
lim 1/n^2=0

x→∞
Данный предел равен нулю, поскольку n→∞, а последовательность 1/n^2 стремится к нулю.

Обычно переменная величина x стремится к конечному пределу a, причем, x постоянно приближается к a, а величина a постоянна. Это записывают следующим образом: limx =a, при этом, n также может стремиться как к нулю, так и к бесконечности. Существуют бесконечные функции, для них предел стремится к бесконечности. В других случаях, когда, например, функцией замедление хода поезда, можно о пределе, стремящемся к нулю.
У пределов имеется ряд свойств. Как правило, любая функция имеет только один предел. Это главное свойство предела. Другие их перечислены ниже:
* Предел суммы равен сумме пределов:
lim(x+y)=lim x+lim y
* Предел произведения равен произведению пределов:
lim(xy)=lim x*lim y
* Предел частного равен частному от пределов:
lim(x/y)=lim x/lim y
* Постоянный множитель выносят за знак предела:
lim(Cx)=C lim x
Если дана функция 1 /x, в которой x →∞, ее предел равен нулю. Если же x→0, предел такой функции равен ∞.
Для тригонометрических функций имеются из этих правил. Так как функция sin x всегда стремится к единице, когда приближается к нулю, для нее справедливо тождество:
lim sin x/x=1

В ряде встречаются функции, при вычислении пределов которых возникает неопределенность - ситуация, при которой предел невозможно вычислить. Единственным выходом из такой ситуации становится Лопиталя. Существует два вида неопределенностей:
* неопределенность вида 0/0
* неопределенность вида ∞/∞
К примеру, дан предел следующего вида: lim f(x)/l(x), причем, f(x0)=l(x0)=0. В таком случае, возникает неопределенность вида 0/0. Для решения такой задачи обе функции подвергают дифференцированию, после чего находят предел результата. Для неопределенностей вида 0/0 предел равен:
lim f(x)/l(x)=lim f"(x)/l"(x) (при x→0)
Это же правило справедливо и для неопределенностей типа ∞/∞. Но в этом случае справедливо следующее равенство: f(x)=l(x)=∞
С помощью правила Лопиталя можно находить значения любых пределов, в которых фигурируют неопределенности. Обязательное условие при

том - отсутствие ошибок при нахождении производных. Так, например, производная функции (x^2)" равна 2x. Отсюда можно сделать вывод, что:
f"(x)=nx^(n-1)

Члена последовательности.

Число а называется пределом последовательности {xn}, если для любого ε>0 существует номер n=n(ε), начиная с которого выполняется |xn-a |


Пример 2. Доказать, что в примера 1 число а=1 не является пределом последовательности предыдущего примера. Решение. Вновь упростите общий член последовательности. Возьмите ε=1 (это любое число >


Задачи непосредственного вычисления предела последовательности довольно однообразны. Все они содержат отношения полиномов относительно n или выражений относительно этих полиномов. Приступая к решению, вынесите за скобки (знак радикала) составляющую, находящуюся в старшей . Пусть для числителя исходного выражения это приведет к появлению множителя a^p, а для знаменателя b^q. Очевидно, что все оставшиеся слагаемые имеют вид С/(n-k) и стремятся к нулю при n>


Первый способ вычисления предела последовательности основан на ее определении. Правда следует запомнить, что путей непосредственного поиска предела он не дает, а позволяет лишь доказать, что какое-либо число а является (или не является) пределом.Пример 1. Доказать, что последовательность {xn}={(3n^2-2n-1)/(n^2-n-2)} имеет предел а=3.Решение. Проводите путем применения определения в обратном порядке. То есть справа налево. Предварительно проверьте – нет ли возможности упростить формулу для xn.хn =(3n^2+4n+2)/(n^2+3n22)=((3n+1)(n+1))/((n+2)(n+1))=)=(3n+1)/(n+2).Рассмотрите неравенство |(3n+1)/(n+2)-3|0 можно найти любое натуральное число nε, большее -2+5/ε.

Пример 2. Доказать, что в примера 1 число а=1 не является пределом последовательности предыдущего примера. Решение. Вновь упростите общий член последовательности. Возьмите ε=1 (это любое число >0).Запишите заключающее неравенство общего определения |(3n+1)/(n+2)-1|

Задачи непосредственного вычисления предела последовательности довольно однообразны. Все они содержат отношения полиномов относительно n или выражений относительно этих полиномов. Приступая к решению, вынесите за скобки (знак радикала) составляющую, находящуюся в старшей . Пусть для числителя исходного выражения это приведет к появлению множителя a^p, а для знаменателя b^q. Очевидно, что все оставшиеся слагаемые имеют вид С/(n-k) и стремятся к нулю при n>k (n стремится к бесконечности). После этого запишите ответ: 0, если pq.

Укажем не традиционный способ нахождения предела последовательности и бесконечных сумм. Будем использовать функциональные последовательности (их члены функции, определенные на некотором промежутке (a,b)).Пример 3. Найти сумму вида 1+1/2! +1/3! +…+1/n! +…=s .Решение. Любое число а^0=1. Положите 1=exp(0) и рассмотрите функциональную последовательность {1+x+x^2/2! +x^3/3! +…+x^/n!}, n=0,1,2,..,n… . Легко заметить, что записанный полином совпадает с многочленом Тейлора по степеням x, который в данном случае совпадает с exp(x). Возьмите х=1. Тогдаexp(1)=e=1+1+1/2! +1/3! +…+1/n! +…=1+s. Ответ s=e-1.

Совет 2: В какой последовательности смотреть фильмы Марвел про мстителей?

Вселенная «Марвел» основана на комиксах издательства Marvel, но далеко не все экранизации комиксов – часть киновселенной. В нее входит только снятое Marvel Studios или совместно с ней. Киновселенная «Марвел» разделена на фазы, каждый фильм в ней имеет свое место. Однако сериалы и короткометражки, являясь частью вселенной, в хронологии могут быть между фазами. Т.е. могут не принадлежать к конкретным частям киновселенной.

Сериалы Netflix и канала abc отличаются от вселенной «Марвел». У киновселенной есть две особенности:

  • каждый фильм наделен собственной историей;
  • глобальный сюжет переходит из одного фильма в другой, в итоге каждый из них двигает этот сюжет вперед.

Сериалы канала abc связаны с глобальным сюжетом киновселенной, но не продвигают, а только дополняют его. Сериалы Netflix - это и вовсе самостоятельные истории, со своим сюжетом и своим глобальным миром.

За годы существования вселенная «Марвел» разрослась, и продолжает расширяться. Поэтому разобраться с хронологией ее фильмов неподготовленному человеку сложно, ведь не каждому понятно, что нельзя смотреть «Железного человека 3» сразу после «Железного человека 2». А чтобы разобраться, надо изучить хронологию, которая включает три фазы.

Первая фаза:

  1. Фильм «Железный человек», 2008 года. Эта картина закладывает фундамент и общий тон следующим экранизациям, ее действие происходит в 2010 году.
  2. Фильм «Невероятный Халк», 2008 года. В этой экранизации зрители понимают, что истории двух разных героев случаются в одной вселенной, поскольку и в «Железном человеке», и в «Невероятном Халке» упомянут Щ.И.Т., программа «суперсолдат», встречается логотип StarkIndusries и т.д. Действие фильма разворачивается в 2011 году. Картина не продолжает историю фильма «Халк» 2003 года.
  3. Фильм «Железный человек 2», 2010 года. Эта история - нечто вроде затравки к Мстителям, она вводит в сюжет Черную Вдову, дает много предпосылок к будущим проектам и рассказывает о новых проблемах Тони Старка, с которыми он столкнулся через год после первой части «Железного человека».
  4. Фильм «Тор», 2011 года. Это тоже подготовка к Мстителям, и главная цель картины - познакомить зрителя с Тором и Локи. Действие сюжета происходит параллельно с историей «Невероятного Халка» и «Железного человека 2».
  5. Фильм «Первый мститель», 2011 года. В нем рассказывают о Капитане Америка - первом супергерое Земли, который, как и Халк, появился из-за сыворотки «суперсолдат». Первая и последняя сцены фильма происходят в 2011 году, а основные действия - в период с 1943 по 1945 годы. В фильме появляется Тессеракт, один из шести Камней Бесконечности, и выясняется, что «отцом» Щ.И.Т.а была организация СНР (Стратегический Научный Резерв).
  6. Короткометражка «Консультант», 2011 года. Здесь разъясняется финальная сцена фильма «Невероятный Халк».
  7. Короткометражка «Забавный случай по пути к молоту Тора», 2011 года.
  8. Фильм «Мстители», 2012 года. Действие сюжета разворачивается в 2012 году, когда Щ.И.Т. ради спасения мира объявляет «общий сбор».

Вторая фаза:

  1. Фильм «Железный человек 3», 2013 года. Действие происходит зимой 2012 года, когда Тони Старк возвращается домой после «Битвы за Нью-Йорк», но его мучают кошмары. Спать он не может, и посвящает свое время созданию новых костюмов.
  2. Сериал «Агенты Щ.И.Т.а», 2013 года.
  3. Фильм «Тор 2: Царство Тьмы», 2013 года. В картине рассказывают, как Тор вернулся домой и обнаружил, что все девять миров погружены в хаос. И о том, как Тор наводил порядок.
  4. Короткометражка «Да здравствует король», 2014 год. Это история о Треворе Слеттери, которая происходит после событий фильма «Железный человек 3».
  5. Фильм «Первый мститель: Другая Война», 2014 года. Это история о Капитане Америка, который не может вернуться домой, потому ищет себе новое дело и становится агентом Щ.И.Т.а, работая в команде с Черной Вдовой. Фильм лучше смотреть между 16 и 17 сериями «Агентов Щ.И.Т.а».
  6. Фильм «Стражи Галактики», 2014 год. Смотреть надо после 1 сезона сериала «Агенты Щ.И.Т.а». Это история о преступниках вне Земли, которые создали команду, чтобы остановить более опасного преступника Ронана, и не дать ему получить Камень Бесконечности.
  7. Сериал «Агенты Щ.И.Т.а», второй сезон, 2014 год.
  8. Сериал «Агент Картер», 2016 год. Это история о том, как Пегги Картер и дворецкий Эдвин Джарвис помогают Говарду Старку вернуть его доброе имя.
  9. Фильм «Мстители: Эра Альтрона», 2015 года. В этой картине Мстители снова собрались, чтобы спасти мир, но этот раз они стали полноценной командой. Смотреть лучше между 19 и 20 сериями второго сезона «Агентов Щ.И.Т.а».
  10. Фильм «Человек-Муравей», 2015 года. Смотреть после 2 сезона сериала «Агенты Щ.И.Т.а».

Третья фаза:

  1. Фильм «Первый Мститель: Противостояние», 2016 года. После «Заковийского договора» Мстители обязаны подчиняться правительству, но это разбивает их на два лагеря: тех, кто за регистрацию, и тех, кто против нее.

Это все фильмы, которые уже вышли в прокат. Но не вся история. В третьей фазе планируется еще 14 фильмов, а потом - четвертая фаза.

Связанная статья

Сегодня на уроке мы разберём строгое определение последовательности и строгое определение предела функции , а также научимся решать соответствующие задачи теоретического характера. Статья предназначена, прежде всего, для студентов 1-го курса естественнонаучных и инженерно-технических специальностей, которые начали изучать теорию математического анализа, и столкнулись с трудностями в плане понимания этого раздела высшей математики. Кроме того, материал вполне доступен и учащимся старших классов.

За годы существования сайта я получил недобрый десяток писем примерно такого содержания: «Плохо понимаю математический анализ, что делать?», «Совсем не понимаю матан, думаю бросить учёбу» и т.п. И действительно, именно матан часто прореживает студенческую группу после первой же сессии. Почему так обстоят дела? Потому что предмет немыслимо сложен? Вовсе нет! Теория математического анализа не столь трудна, сколько своеобразна . И её нужно принять и полюбить такой, какая она есть =)

Начнём с самого тяжёлого случая. Первое и главное – не надо бросать учёбу. Поймите правильно, бросить, оно всегда успеется;-) Безусловно, если через год-два от выбранной специальности будет тошнить, тогда да – следует задуматься (а не пороть горячку!) о смене деятельности. Но пока стОит продолжить. И, пожалуйста, забудьте фразу «Ничего не понимаю» – так не бывает, чтобы СОВСЕМ ничего не понимать.

Что делать, если с теорией плохо? Это, кстати, касается не только математического анализа. Если с теорией плохо, то сначала нужно СЕРЬЁЗНО налечь на практику. При этом решаются сразу две стратегические задачи:

– Во-первых, значительная доля теоретических знаний появилась благодаря практике. И поэтому многие люди понимают теорию через… – всё верно! Нет-нет, вы не о том подумали =)

– И, во-вторых, практические навыки с большой вероятностью «вытянут» вас на экзамене, даже если…, но не будем так настраиваться! Всё реально и всё реально «поднять» в достаточно короткие сроки. Математический анализ – это мой любимый раздел высшей математики, и поэтому я просто не мог не протянуть вам ноги руку помощи:

В начале 1-го семестра обычно проходят пределы последовательностей и пределы функций. Не понимаете, что это такое и не знаете, как их решать? Начните со статьи Пределы функций , в которой «на пальцах» рассмотрено само понятие и разобраны простейшие примеры. Далее проработайте другие уроки по теме, в том числе урок о пределах последовательностей , на котором я фактически уже сформулировал строгое определение.

Какие значки помимо знаков неравенств и модуля вы знаете?

– длинная вертикальная палка читается так: «такое, что», «такая, что», «такой, что» либо «такие, что» , в нашем случае, очевидно, речь идёт о номере – поэтому «такой, что»;

– для всех «эн», бОльших чем ;

знак модуля означает расстояние , т.е. эта запись сообщает нам о том, что расстояние между значениями меньше эпсилон.

Ну как, убийственно сложно? =)

После освоения практики жду вас в следующем параграфе:

И в самом деле, немного порассуждаем – как сформулировать строгое определение последовательности? …Первое, что приходит на ум в свете практического занятия : «предел последовательности – это число, к которому бесконечно близко приближаются члены последовательности».

Хорошо, распишем последовательность :

Нетрудно уловить, что подпоследовательность бесконечно близко приближаются к числу –1, а члены с чётными номерами – к «единице».

А может быть предела два? Но тогда почему у какой-нибудь последовательности их не может быть десять или двадцать? Так можно далеко зайти. В этой связи логично считать, что если у последовательности существует предел, то он единственный .

Примечание : у последовательности нет предела, однако из неё можно выделить две подпоследовательности (см. выше), у каждой из которых существует свой предел.

Таким образом, высказанное выше определение оказывается несостоятельным. Да, оно работает для случаев вроде (чем я не совсем корректно пользовался в упрощённых объяснениях практических примеров) , но сейчас нам нужно отыскать строгое определение.

Попытка вторая: «предел последовательности – это число, к которому приближаются ВСЕ члены последовательности, за исключением, разве что их конечного количества». Вот это уже ближе к истине, но всё равно не совсем точно. Так, например, у последовательности половина членов вовсе не приближается к нулю – они ему просто-напросто равны =) К слову, «мигалка» вообще принимает два фиксированных значения.

Формулировку нетрудно уточнить, но тогда возникает другой вопрос: как записать определение в математических знаках? Научный мир долго бился над этой проблемой, пока ситуацию не разрешил известный маэстро , который, по существу, и оформил классический матанализ во всей его строгости. Коши предложил оперировать окрестностями , чем значительно продвинул теорию.

Рассмотрим некоторую точку и её произвольную -окрестность:

Значение «эпсилон» всегда положительно, и, более того, мы вправе выбрать его самостоятельно . Предположим, что в данной окрестности находится множество членов (не обязательно все) некоторой последовательности . Как записать тот факт, что, например десятый член попал в окрестность? Пусть он находится в правой её части. Тогда расстояние между точками и должно быть меньше «эпсилон»: . Однако если «икс десятое» расположено левее точки «а», то разность будет отрицательна, и поэтому к ней нужно добавить знак модуля : .

Определение : число называется пределом последовательности, если для любой его окрестности (заранее выбранной) существует натуральный номер – ТАКОЙ, что ВСЕ члены последовательности с бОльшими номерами окажутся внутри окрестности:

Или короче: , если

Иными словами, какое бы малое значение «эпсилон» мы ни взяли, рано или поздно «бесконечный хвост» последовательности ПОЛНОСТЬЮ окажется в этой окрестности.

Так, например, «бесконечный хвост» последовательности ПОЛНОСТЬЮ зайдёт в любую сколь угодно малую -окрестность точки . Таким образом, это значение является пределом последовательности по определению. Напоминаю, что последовательность, предел которой равен нулю, называют бесконечно малой .

Следует отметить, что для последовательности уже нельзя сказать «бесконечный хвост зайдёт » – члены с нечётными номерами по факту равны нулю и «никуда не заходят» =) Именно поэтому в определении использован глагол «окажутся». И, разумеется, члены такой последовательности, как тоже «никуда не идут». Кстати, проверьте, будет ли число её пределом.

Теперь покажем, что у последовательности не существует предела. Рассмотрим, например, окрестность точки . Совершенно понятно, что нет такого номера, после которого ВСЕ члены окажутся в данной окрестности – нечётные члены всегда будут «выскакивать» к «минус единице». По аналогичной причине не существует предела и в точке .

Закрепим материал практикой:

Пример 1

Доказать что предел последовательности равен нулю. Указать номер , после которого, все члены последовательности гарантированно окажутся внутри любой сколь угодно малой -окрестности точки .

Примечание : у многих последовательностей искомый натуральный номер зависит от значения – отсюда и обозначение .

Решение : рассмотрим произвольную найдётся ли номер – такой, что ВСЕ члены с бОльшими номерами окажутся внутри этой окрестности:

Чтобы показать существование искомого номера , выразим через .

Так как при любом значении «эн» , то знак модуля можно убрать:

Используем «школьные» действия с неравенствами, которые я повторял на уроках Линейные неравенства и Область определения функции . При этом важным обстоятельством является то, что «эпсилон» и «эн» положительны:

Поскольку слева речь идёт о натуральных номерах, а правая часть в общем случае дробна, то её нужно округлить:

Примечание : иногда для перестраховки справа добавляют единицу, но на самом деле это излишество. Условно говоря, если и мы ослабим результат округлением в меньшую сторону , то ближайший подходящий номер («тройка») всё равно будет удовлетворять первоначальному неравенству.

А теперь смотрим на неравенство и вспоминаем, что изначально мы рассматривали произвольную -окрестность, т.е. «эпсилон» может быть равно любому положительному числу.

Вывод : для любой сколько угодно малой -окрестности точки нашлось значение . Таким образом, число является пределом последовательности по определению. Что и требовалось доказать .

К слову, из полученного результата хорошо просматривается естественная закономерность: чем меньше -окрестность – тем больше номер , после которого ВСЕ члены последовательности окажутся в данной окрестности. Но каким бы малым ни было «эпсилон» – внутри всегда будет «бесконечный хвост», а снаружи – пусть даже большое, однако конечное число членов.

Как впечатления? =) Согласен, что странновато. Но строго! Пожалуйста, перечитайте и осмыслите всё ещё раз.

Рассмотрим аналогичный пример и познакомимся с другими техническими приёмами:

Пример 2

Решение : по определению последовательности нужно доказать, что (проговариваем вслух!!!) .

Рассмотрим произвольную -окрестность точки и проверим, существует ли натуральный номер – такой, что для всех бОльших номеров выполнено неравенство:

Чтобы показать существование такого , нужно выразить «эн» через «эпсилон». Упрощаем выражение под знаком модуля:

Модуль уничтожает знак «минус»:

Знаменатель положителен при любом «эн», следовательно, палки можно убрать:

Перетасовка:

Теперь надо бы извлечь квадратный корень, но загвоздка состоит в том, что при некоторых «эпсилон» правая часть будет отрицательной. Чтобы избежать этой неприятности усилим неравенство модулем:

Почему так можно сделать? Если, условно говоря, окажется, что , то подавно будет выполнено и условие . Модуль может только увеличить разыскиваемый номер , и это нас тоже устроит! Грубо говоря, если подходит сотый, то подойдёт и двухсотый! В соответствии с определением, нужно показать сам факт существования номера (хоть какого-то), после которого все члены последовательности окажутся в -окрестности. Кстати, именно поэтому нам не страшнО финальное округление правой части в бОльшую сторону.

Извлекаем корень:

И округляем результат:

Вывод : т.к. значение «эпсилон» выбиралось произвольно, то для любой сколько угодно малой -окрестности точки нашлось значение , такое, что для всех бОльших номеров выполнено неравенство . Таким образом, по определению. Что и требовалось доказать .

Советую особо разобраться в усилении и ослаблении неравенств – это типичные и очень распространённые приёмы математического анализа. Единственное, нужно следить за корректностью того или иного действия. Так, например, неравенство ни в коем случае нельзя ослаблять , вычитая, скажем, единицу:

Опять же условно: если номер точно подойдёт, то предыдущий может уже и не подойти.

Следующий пример для самостоятельного решения:

Пример 3

Используя определение последовательности, доказать, что

Краткое решение и ответ в конце урока.

Если последовательность бесконечно велика , то определение предела формулируется похожим образом: точка называется пределом последовательности, если для любого, сколь угодно большого числа существует номер , такой, что для всех бОльших номеров , будет выполнено неравенство . Число называют окрестностью точки «плюс бесконечность» :

Иными словами, какое бы большое значение мы ни взяли, «бесконечный хвост» последовательности обязательно зайдёт в -окрестность точки , оставив слева лишь конечное число членов.

Дежурный пример:

И сокращённая запись: , если

Для случая запишите определение самостоятельно. Правильная версия в конце урока.

После того, как вы «набили» руку на практических примерах и разобрались с определением предела последовательности, можно обратиться к литературе по математическому анализу и/или своей тетрадке с лекциями. Рекомендую закачать 1-й том Бохана (попроще – для заочников) и Фихтенгольца (более подробно и обстоятельно) . Из других авторов советую Пискунова, курс которого ориентирован на технические ВУЗы.

Попытайтесь добросовестно изучить теоремы, которые касаются предела последовательности, их доказательства, следствия. Поначалу теория может казаться «мутной», но это нормально – просто нужно привыкнуть. И многие даже войдут во вкус!

Строгое определение предела функции

Начнём с того же самого – как сформулировать данное понятие? Словесное определение предела функции формулируется значительно проще: «число является пределом функции , если при «икс», стремящемся к (и слева, и справа) , соответствующие значения функции стремятся к » (см. чертёж) . Всё вроде бы нормально, но слова словами, смысл смыслом, значок значком, а строгих математических обозначений маловато. И во втором параграфе мы познакомимся с двумя подходами к решению данного вопроса.

Пусть функция определена на некотором промежутке за исключением, возможно, точки . В учебной литературе общепринято считают, что функция там не определена:

Такой выбор подчёркивает суть предела функции : «икс» бесконечно близко приближается к , и соответствующие значения функции – бесконечно близко к . Иными словами, понятие предела подразумевает не «точный заход» в точки, а именно бесконечно близкое приближение , при этом не важно – определена ли функция в точке или нет.

Первое определение предела функции, что неудивительно, формулируется с помощью двух последовательностей. Во-первых, понятия родственные, и, во-вторых, пределы функций обычно изучают после пределов последовательностей.

Рассмотрим последовательность точек (на чертеже отсутствуют) , принадлежащих промежутку и отличных от , которая сходится к . Тогда соответствующие значения функции тоже образуют числовую последовательность, члены которой располагаются на оси ординат.

Предел функции по Гейне для любой последовательности точек (принадлежащих и отличных от ) , которая сходится к точке , соответствующая последовательность значений функции сходится к .

Эдуард Гейне – это немецкий математик. …И не надо тут ничего такого думать, гей в Европе всего лишь один – это Гей-Люссак =)

Второе определение предела соорудил… да-да, вы правы. Но сначала разберёмся в его конструкции. Рассмотрим произвольную -окрестность точки («чёрная» окрестность) . По мотивам предыдущего параграфа, запись означает, что некоторое значение функции находится внутри «эпсилон»-окрестности.

Теперь найдём -окрестность, которая соответствует заданной -окрестности (мысленно проводим чёрные пунктирные линии слева направо и затем сверху вниз) . Обратите внимание, что значение выбирается по длине меньшего отрезка, в данном случае – по длине более короткого левого отрезка. Более того, «малиновую» -окрестность точки можно даже уменьшить, поскольку в нижеследующем определении важен сам факт существования этой окрестности. И, аналогично, запись означает, что некоторое значение находится внутри «дельта»-окрестности.

Предел функции по Коши : число называется пределом функции в точке , если для любой заранее выбранной окрестности (сколь угодно малой) , существует -окрестность точки , ТАКАЯ , что: КАК ТОЛЬКО значения (принадлежащие ) входят в данную окрестность: (красные стрелки) – ТАК СРАЗУ соответствующие значения функции гарантированно зайдут в -окрестность: (синие стрелки) .

Должен предупредить, что в целях бОльшей доходчивости я немного сымпровизировал, поэтому не злоупотребляйте =)

Короткая запись: , если

В чём суть определения? Образно говоря, бесконечно уменьшая -окрестность, мы «сопровождаем» значения функции до своего предела, не оставляя им альтернативы приближаться куда-то ещё. Довольно необычно, но опять же строго! Чтобы как следует проникнуться идеей, перечитайте формулировку ещё раз.

! Внимание : если вам потребуется сформулировать только определение по Гейне или только определение по Коши , пожалуйста, не забывайте о существенном предварительном комментарии: «Рассмотрим функцию , которая определена на некотором промежутке за исключением, возможно, точки » . Я обозначил это единожды в самом начале и каждый раз не повторял.

Согласно соответствующей теореме математического анализа, определения по Гейне и по Коши эквивалентны, однако наиболее известен второй вариант (ещё бы!) , который также называют «предел на языке »:

Пример 4

Используя определение предела, доказать, что

Решение : функция определена на всей числовой прямой кроме точки . Используя определение , докажем существование предела в данной точке.

Примечание : величина «дельта»-окрестности зависит от «эпсилон», отсюда и обозначение

Рассмотрим произвольную -окрестность. Задача состоит в том, чтобы по этому значению проверить, существует ли -окрестность, ТАКАЯ , что из неравенства следует неравенство .

Предполагая, что , преобразуем последнее неравенство:
(разложили квадратный трёхчлен )

Функция f (x ) называется функцией целочисленного аргумента, если множество значений x , для которых она определена, является множеством всех натуральных чисел1, 2, 3,… Примером функции целочисленного аргумента может служить сумма n первых чисел натурального ряда. В данном случае

Числовой последовательностью называется бесконечное множество чисел

следующих одно за другим в определенном порядке и построенных по определенному закону, с помощью которого задается как функция целочисленного аргумента, т.е. .

Число А называется пределом последовательности (1), если для любого существует число , такое, что при выполняется неравенство . Если число А есть предел последовательности (1), то пишут

Числовая последовательность не может иметь более одного предела. Последовательность, имеющая предел, называется сходящейся.

Для сходящихся последовательностей имеют место теоремы:

Пример 1.

Найти общий член последовательности 1, 4, 9, 16, 25, …

Р е ш е н и е: нетрудно видеть, что

Следовательно

Пример 2.

Найти общий член последовательности

Р е ш е н и е: не трудно видеть, что

,

, и т.д.

Следовательно:

Пример 3.

Доказать, что последовательность с общим членом имеет предел, равный нулю.

Р е ш е н и е: запишем ряд членов последовательности

и положим . Для всех членов данной последовательности, начиная с четвертого, выполняется равенство

Действительно

В данном случае N (см. определение предела последовательности) можно принять равным трем (или любому числу, больше трех), так как, если порядковый номер члена последовательности n больше трех, то выполняется неравенство

.

Положим теперь . Ясно, что для всех членов последовательности начиная с седьмого,

.

Теперь за N можно принять шесть (или любое число, большее шести). Если , то и т.д.

В данном случае можно найти общее выражение для числа N в зависимости от . Общий член данной последовательности . Задавшись произвольным положительным числом , мы должны в соответствии с определением предела, потребовать, чтобы при n > N выполнялось неравенство , если .

Решая неравенство относительно n, получаем . Итак, за N можно принять число (или любое большее число). Таким образом, мы показали, что для любого существует такое , чтопри , выполняется неравенство , а это и доказывает, что пределом последовательности является нуль.

Отметим, что в этой задаче члены последовательности приближались к своему пределу, оставаясь больше этого предела, как говорят, справа.

2.Способы задания функции.

1. Аналитический способ

Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции. Наиболее употребительным является способ задания функции с помощью формулы у = f (х), где f (х) - некоторое выражение с переменной х. В таком случае говорят, что функция задана формулой или что функция задана аналитически.

Для аналитически заданной функции иногда не указывают явно область определения функции. В таком случае подразумевают, что область определения функции у = f (х) совпадает с областью определения выражения f (х), т. е. с множеством тех значений х, при которых выражение f (х) имеет смысл.

Для тех, кто хочет научиться находить пределы в данной статье мы расскажем об этом. Не будем углубляться в теорию, обычно её дают на лекциях преподаватели. Так что "скучная теория" должна быть у Вас законспектирована в тетрадках. Если этого нет, то почитать можно учебники взятые в библиотеке учебного заведения или на других интернет-ресурсах.

Итак, понятие предела достаточно важно в изучении курса высшей математики, особенно когда вы столкнетесь с интегральным исчислением и поймёте связь между пределом и интегралом. В текущем материале будут рассмотрены простые примеры, а также способы их решения.

Примеры решений

Пример 1
Вычислить а) $ \lim_{x \to 0} \frac{1}{x} $; б)$ \lim_{x \to \infty} \frac{1}{x} $
Решение

а) $$ \lim \limits_{x \to 0} \frac{1}{x} = \infty $$

б)$$ \lim_{x \to \infty} \frac{1}{x} = 0 $$

Нам часто присылают эти пределы с просьбой помочь решить. Мы решили их выделить отдельным примером и пояснить, что данные пределы необходимо просто запомнить, как правило.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \text{a)} \lim \limits_{x \to 0} \frac{1}{x} = \infty \text{ б)}\lim \limits_{x \to \infty} \frac{1}{x} = 0 $$

Что делать с неопределенностью вида: $ \bigg [\frac{0}{0} \bigg ] $

Пример 3
Решить $ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} $
Решение

Как всегда начинаем с подстановки значения $ x $ в выражение, стоящее под знаком предела.

$$ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} = \frac{(-1)^2-1}{-1+1}=\frac{0}{0} $$

Что теперь дальше? Что же должно получиться в итоге? Так как это неопределенность, то это ещё не ответ и продолжаем вычисление. Так как в числители у нас многочлен, то разложим его на множители, помощью знакомой всем формулы ещё со школьной скамьи $$ a^2-b^2=(a-b)(a+b) $$. Вспомнили? Отлично! Теперь вперед и с песней применять её :)

Получаем, что числитель $ x^2-1=(x-1)(x+1) $

Продолжаем решать учитывая вышеприведенное преобразование:

$$ \lim \limits_{x \to -1}\frac{x^2-1}{x+1} = \lim \limits_{x \to -1}\frac{(x-1)(x+1)}{x+1} = $$

$$ = \lim \limits_{x \to -1}(x-1)=-1-1=-2 $$

Ответ
$$ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} = -2 $$

Устремим предел в последних двух примерах к бесконечности и рассмотрим неопределенность: $ \bigg [\frac{\infty}{\infty} \bigg ] $

Пример 5
Вычислить $ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} $
Решение

$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} = \frac{\infty}{\infty} $

Что же делать? Как быть? Не стоит паниковать, потому что невозможное - возможно. Нужно вынести за скобки и в числителе и в знаменателе икс, а потом его сократить. После этого предел попытаться вычислить. Пробуем...

$$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} =\lim \limits_{x \to \infty} \frac{x^2(1-\frac{1}{x^2})}{x(1+\frac{1}{x})} = $$

$$ = \lim \limits_{x \to \infty} \frac{x(1-\frac{1}{x^2})}{(1+\frac{1}{x})} = $$

Используя определение из примера 2 и подставляя в место х бесконечность получаем:

$$ = \frac{\infty(1-\frac{1}{\infty})}{(1+\frac{1}{\infty})} = \frac{\infty \cdot 1}{1+0} = \frac{\infty}{1} = \infty $$

Ответ
$$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} = \infty $$

Алгоритм вычисления лимитов

Итак, давайте кратко подведем итог разобранным примерам и составим алгоритм решения пределов:

  1. Подставить точку х в выражение, следующее после знака предела. Если получается определенное число, либо бесконечность, то предел решен полностью. В противном случае имеем неопределенность: "ноль делить на ноль" или "бесконечность делить на бесконечность" и переходим к следующим пунктам инструкции.
  2. Чтобы устранить неопределенность "ноль делить на ноль" нужно разложить числитель и знаменатель на множители. Сократить подобные. Подставить точку х в выражение, стоящее под знаком предела.
  3. Если неопределенность "бесконечность делить на бесконечность", тогда выносим и в числителе, и в знаменателе x наибольшей степени. Сокращаем иксы. Подставляем значения икса из под предела в оставшееся выражение.

В этой статье Вы ознакомились с основами решения пределов, часто используемых в курсе Математического анализа. Конечно же это не все типы задач, предлагающихся экзаменаторами, а только простейшие пределы. В следующих статьях поговорим о других типах заданий, но сперва необходимо усвоить этот урок, чтобы двигаться далее. Обсудим, что делать, если есть корни, степени, изучим бесконечно малые эквивалентные функции, замечательные пределы, правило Лопиталя.

Если у Вас не получается самостоятельно решить пределы, то не паникуйте. Мы всегда рады помочь!

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса