Подпишись и читай
самые интересные
статьи первым!

Что называется прямоугольной системой координат на плоскости. Введение системы координат

Прямоугольной системой координат в пространстве называется тройка взаимно перпендикулярных осей, пересекающихся в одной точке О, именуемой началом координат.

Координатные оси обычно обозначают буквами и называют соответственно осью абсцисс, осью ординат, осью аппликат, или же осью осью Оу, осью (рис. 33).

Орты координатиых осей Ох, Оу, Oz обозначаются соответственно или Мы будем пользоваться преимущественно последним обозначением.

Различают правую и левую координатные системы.

Система координат называется правой, если из конца третьего орта к поворот от первого орта ко второму орту видел происходящим против хода стрелки часов (рис. 34, а).

Система координат называется левой, если из конца третьего орта поворот от первого орта ко второму орту виден происходящим по ходу часовой стрелки (рис. 34, б).

Таким образом, если ввинчивать винт в направлении вектора к, вращая его от то в случае правой системы резьба должпа быть правой, а в случае левой системы - левой (рис. 35).

Многие положения векторной алгебры не зависят от того, пользуемся ли мы правой или левой системой координат. Однако иногда это обстоятельство имеет значение. В дальнейшем мы всегда будем примепять правую систему координат, как это принято в физике.

Для определения положения точки в пространстве мы будем использовать декартовы прямоугольные координаты (рис.2).

Декартова прямоугольная система координат в пространстве образуется тремя взаимно перпендикулярными осями координат OX, OY, OZ. Оси координат пересекаются в точке O, которая называется началом координат, на каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения обычно (не обязательно) одинаковы для всех осей. Ось OX называется осью абсцисс (или просто абсциссой), ось OY - осью ординат (ординатой), ось OZ - осью аппликат (апп ликатой).

Положение точки A в пространстве определяется тремя координатами x, y и z. Координата x равна длине отрезка OB, координата y — длине отрезка OC, координата z — длине отрезка OD в выбранных единицах измерения. Отрезки OB, OC и OD определяются плоскостями, проведёнными из точки параллельно плоскостям YOZ, XOZ и XOY соответственно.

Координата x называется абсциссой точки A, координата y — ординатой точки A, координата z — аппликатой точки A.

Символически это записывают так:

или привязывают запись координат к конкретной точке с помощью индекса:

x A , y A , z A ,

Каждая ось рассматривается как числовая прямая, т. е. имеет положительное направление, а точкам, лежащим на отрицательном луче, приписываются отрицательные значения координаты (расстояние берется со знаком минус). То есть, если бы, например, точка B лежала не как на рисунке — на луче OX, а на его продолжении в обратную сторону от точки O (на отрицательной части оси OX), то абсцисса x точки A была бы отрицательной (минус расстоянию OB). Аналогично и для двух других осей.

Координатные оси OX, OY, OZ, изображенные на рис. 2, образуют правую систему координат. Это означает, что если смотреть на плоскость YOZ вдоль положительного направления оси OX, то движение оси OY в сторону оси OZ будет проходить по часовой стрелке. Эту ситуацию можно описать при помощи правила буравчика : если буравчик (винт с правой резьбой) вращать по направлению от оси OY к оси OZ, то он будет двигаться вдоль положительного направления оси OX.

Векторы единичной длины, направленные вдоль координатных осей, называются координатными ортами. Их обозначают обычно как (рис. 3). Встречается так же обозначение Орты составляют базис координатной системы.

В случае правой системы координат действительны следующие формулы с векторными произведениями ортов:

В пространстве, в которой положение точки может быть определено как её проекции на фиксированные прямые, пересекающиеся в одной точке, называемой началом координат. Эти проекции называются координатами точки, а прямые - осями координат.

В общем случае на плоскости декартова система координат (аффинная система координат) задаётся точкой О (началом координат) и упорядоченной парой приложенных к ней не лежащих на одной прямой векторов е 1 и е 2 (базисных векторов). Прямые, проходящие через начало координат в направлении базисных векторов, называют осями координат данной декартовой системы координат. Первая, определяемая вектором е 1 , называется осью абсцисс (или осью Ох), вторая - осью ординат (или осью Оу). Сама декартова система координат обозначается Ое 1 е 2 или Оху. Декартовыми координатами точки М (рисунок 1) в декартовой системе координат Oe 1 е 2 называется упорядоченная пара чисел (х, у), которые являются коэффициентами разложения вектора ОМ по базису {е 1 , е 2 }, то есть х и у таковы, что ОМ = хе 1 + уе 2 . Число х, -∞ < x < ∞, называется абсциссой, чис-ло у, - ∞ < у < ∞, - ординатой точки М. Если (x, у) - координаты точки М, то пишут М(х, у).

Если на плоскости введены две декартовы системы координат Oe 1 e 2 и 0’е’ 1 е’ 2 так, что векторы базиса {е’ 1 , е’ 2 } выражены через векторы базиса {e 1 ,е 2 } формулами

e’ 1 = a 11 e 1 + a 12 е 2 , е’ 2 = а 21 e 1 + a 22 e 2

и точка О’ имеет в декартовой системе координат Оe 1 e 2 координаты (х 0 , у 0), то координаты (х, у) точки М в декартовой системе координат Оe 1 e2 и координаты (х’, у’) той же точки в декартовой системе координат О’е 1 е’ 2 связаны соотношениями

х = а 11 х’ + а 21 у’ + х 0 , у = а 12 х’+ а 22 у’+ у 0 .

Декартову систему координат называют прямоугольной, если базис {е 1 , е 2 } ортонормированный, то есть векторы е 1 и е 2 взаимно перпендикулярны и имеют длины, равные единице (векторы е 1 и е 2 называют в этом случае ортами). В прямоугольной декартовой системе координат координаты х и у точки М суть величины ортогональных проекций точки М на оси Ох и Оу соответственно. В прямоугольной декартовой системе координат Оху расстояние между точками М 1 (х 1 , у 1) и М 2 (х 2 , у 2) равно √(х 2 -х 1) 2 + (y 2 -y 1) 2

Формулы перехода от одной прямоугольной декартовой системы координат Оху к другой прямоугольной декартовой системе координат О’х’у’, начало которой О’ декартовой системы координат Оху есть О’(х0, у0), имеют вид

х = х’cosα - у’sinα + х 0 , у = х’sin α + у’cosα + у 0

х = х’cosα + у’sinα + х 0 , у = х’sinα - у’cosα + у 0 .

В первом случае система О’х’у’ образуется поворотом базисных векторов е 1 ; е 2 на угол α и последующим переносом начала координат О в точку О’ (рисунок 2),

а во втором случае - поворотом базисных векторов е 1 , е 2 на угол α, последующим отражением оси, содержащей вектор е 2 относительно прямой, несущей вектор е 1 , и переносом начала координат О в точку О’ (рисунок 3).

Иногда используются косоугольные декартовы системы координат, отличающиеся от прямоугольной тем, что угол между единичными базисными векторами не является прямым.

Аналогично определяется общая декартова система координат (аффинная система координат) в пространстве: задаётся точка О - начало координат и упорядоченная тройка приложенных к ней не лежащих в одной плоскости векторов е 1 , е 2 , е 3 (базисных векторов). Как и в случае плоскости, определяются оси координат - ось абсцисс (ось Ох), ось ординат (ось Оу) и ось аппликат (ось Оz) (рисунок 4).

Декартова система координат в пространстве обозначается Oe 1 е 2 е 3 (или Oxyz). Плоскости, проходящие через пары осей координат, называются координатными плоскостями. Декартова система координат в пространстве называется правой, если поворот от оси Ох к оси Оу совершается в направлении, противоположном движению часовой стрелки, если смотреть на плоскость Оху из какой-нибудь точки положительной полуоси Оz, в противоположном случае декартова система координат называется левой. Если базисные векторы е 1 , е 2 , е 3 имеют длины, равные единице, и попарно перпендикулярны, то декартова система координат называется прямоугольной. Положение одной прямоугольной декартовой системы координат в пространстве относительно другой прямоугольной декартовой системы координат с той же ориентацией определяется тремя эйлеровыми углами.

Декартова система координат названа по имени Р. Декарта, хотя в его сочинении «Геометрия» (1637) рассматривалась косоугольная система координат, в которой координаты точек могли быть только положительными. В издании 1659-61 годов к «Геометрии» приложена работа голландского математика И. Гудде, в которой впервые допускаются как положительные, так и отрицательные значения координат. Пространственную декартову систему координат ввёл французский математик Ф. Лаир (1679). В начале18 века установились обозначения х, у, z для декартовых координат.

Метод координат - это, конечно, очень хорошо, но в настоящих задачах C2 никаких координат и векторов нет. Поэтому их придется вводить. Да-да, вот так взять и ввести: указать начало отсчета, единичный отрезок и направление осей x, y и z.

Самое замечательное свойство этого метода заключается в том, что не имеет никакого значения, как именно вводить систему координат. Если все вычисления будут правильными, то и ответ будет правильным.

Координаты куба

Если в задаче C2 будет куб - считайте, что вам повезло. Это самый простой многогранник, все двугранные углы которого равны 90°.

Система координат также вводится очень просто:

  1. Начало координат - в точке A;
  2. Чаще всего ребро куба не указано, поэтому принимаем его за единичный отрезок;
  3. Ось x направляем по ребру AB, y - по ребру AD, а ось z - по ребру AA 1 .

Обратите внимание: ось z направляется вверх! После двумерной системы координат это несколько непривычно, но на самом деле очень логично.

Итак, теперь у каждой вершины куба есть координаты. Соберем их в таблицу - отдельно для нижней плоскости куба:

Несложно заметить, что точки верхней плоскости отличаются соответствующих точек нижней только координатой z. Например, B = (1; 0; 0), B 1 = (1; 0; 1). Главное - не запутаться!

Призма - это уже намного веселее. При правильном подходе достаточно знать координаты только нижнего основания - верхнее будет считаться автоматически.

В задачах C2 встречаются исключительно правильные трехгранные призмы (прямые призмы, в основании которых лежит правильный треугольник). Для них система координат вводится почти так же, как и для куба. Кстати, если кто не в курсе, куб - это тоже призма, только четырехгранная.

Итак, поехали! Вводим систему координат:

  1. Начало координат - в точке A;
  2. Сторону призмы принимаем за единичный отрезок, если иное не указано в условии задачи;
  3. Ось x направляем по ребру AB, z - по ребру AA 1 , а ось y расположим так, чтобы плоскость OXY совпадала с плоскостью основания ABC.

Здесь требуются некоторые пояснения. Дело в том, что ось y НЕ совпадает с ребром AC, как многие считают. А почему не совпадает? Подумайте сами: треугольник ABC - равносторонний, в нем все углы по 60°. А углы между осями координат должны быть по 90°, поэтому сверху картинка будет выглядеть так:

Надеюсь, теперь понятно, почему ось y не пойдет вдоль AC. Проведем в этом треугольнике высоту CH. Треугольник ACH - прямоугольный, причем AC = 1, поэтому AH = 1 · cos A = cos 60°; CH = 1 · sin A = sin 60°. Эти факты нужны для вычисления координат точки C.

Теперь взглянем на всю призму вместе с построенной системой координат:

Получаем следующие координаты точек:

Как видим, точки верхнего основания призмы снова отличаются от соответствующих точек нижнего лишь координатой z. Основная проблема - это точки C и C 1 . У них есть иррациональные координаты, которые надо просто запомнить. Ну, или понять, откуда они возникают.

Координаты шестигранной призмы

Шестигранная призма - это «клонированная» трехгранная. Можно понять, как это происходит, если взглянуть на нижнее основание - обозначим его ABCDEF. Проведем дополнительные построения: отрезки AD, BE и CF. Получилось шесть треугольников, каждый из которых (например, треугольник ABO) является основанием для трехгранной призмы.

Теперь введем собственно систему координат. Начало координат - точку O - поместим в центр симметрии шестиугольника ABCDEF. Ось x пойдет вдоль FC, а ось y - через середины отрезков AB и DE. Получим такую картинку:

Обратите внимание: начало координат НЕ совпадает с вершиной многогранника! На самом деле, при решении настоящих задач вы обнаружите, что это очень удобно, поскольку позволяет значительно уменьшить объем вычислений.

Осталось добавить ось z. По традиции, проводим ее перпендикулярно плоскости OXY и направляем вертикально вверх. Получим итоговую картинку:

Запишем теперь координаты точек. Предположим, что все ребра нашей правильной шестигранной призмы равны 1. Итак, координаты нижнего основания:

Координаты верхнего основания сдвинуты на единицу по оси z:

Пирамида - это вообще очень сурово. Мы разберем только самый простой случай - правильную четырехугольную пирамиду, все ребра которой равны единице. Однако в настоящих задачах C2 длины ребер могут отличаться, поэтому ниже приведена и общая схема вычисления координат.

Итак, правильная четырехугольная пирамида. Это такая же, как у Хеопса, только чуть поменьше. Обозначим ее SABCD, где S - вершина. Введем систему координат: начало в точке A, единичный отрезок AB = 1, ось x направим вдоль AB, ось y - вдоль AD, а ось z - вверх, перпендикулярно плоскости OXY. Для дальнейших вычислений нам потребуется высота SH - вот и построим ее. Получим следующую картинку:

Теперь найдем координаты точек. Для начала рассмотрим плоскость OXY. Здесь все просто: в основании лежит квадрат, его координаты известны. Проблемы возникают с точкой S. Поскольку SH - высота к плоскости OXY, точки S и H отличаются лишь координатой z. Собственно, длина отрезка SH - это и есть координата z для точки S, поскольку H = (0,5; 0,5; 0).

Заметим, что треугольники ABC и ASC равны по трем сторонам (AS = CS = AB = CB = 1, а сторона AC - общая). Следовательно, SH = BH. Но BH - половина диагонали квадрата ABCD, т.е. BH = AB · sin 45°. Получаем координаты всех точек:

Вот и все с координатами пирамиды. Но не с координатами вообще. Мы рассмотрели лишь самые распространенные многогранники, однако этих примеров достаточно, чтобы самостоятельно вычислить координаты любых других фигур. Поэтому можно приступать, собственно, к методам решения конкретных задач C2.

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса