Подпишись и читай
самые интересные
статьи первым!

Декартовы прямоугольные координаты точки. Прямоугольная система координат

Прямоугольная система координат на плоскости образуется двумя взаимно перпендикулярными осями координат X "X и Y "Y O , которая называется началом координат, на каждой оси выбрано положительное направление. В правосторонней системе координат положительное направление осей выбирают так, чтобы при направлении оси Y "Y вверх, ось X "X смотрела направо.

Четыре угла (I, II, III, IV), образованные осями координат X "X и Y "Y , называются координатными углами или квадрантами (см. рис. 1).

Положение точки A на плоскости определяется двумя координатами x и y . Координата x равна длине отрезка OB , координата y - длине отрезка OC OB и OC определяются линиями, проведёнными из точки A параллельно осям Y "Y и X "X соответственно.

Координата x называется абсциссой точки A , координата y - ординатой точки A . Записывают так: .

Если точка A лежит в координатном углу I, то точка A имеет положительные абсциссу и ординату. Если точка A лежит в координатном углу II, то точка A имеет отрицательную абсциссу и положительную ординату. Если точка A лежит в координатном углу III, то точка A имеет отрицательные абсциссу и ординату. Если точка A лежит в координатном углу IV, то точка A имеет положительную абсциссу и отрицательную ординату.

Рис. 2 : Декартова плоскость

Декартовыми прямоугольными координатами точки P на плоскости называются взятые с определенным знаком расстояния (выраженные в единицах масштаба) этой точки до двух взаимно перпендикулярных прямых - осей координат или, что то же, проекции радиус-вектора r точки P на две взаимно перпендикулярные координатные оси.

Прямоугольная система координат в пространстве образуется тремя взаимно перпендикулярными осями координат OX , OY и OZ . Оси координат пересекаются в точке O , которая называется началом координат, на каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения обычно одинаковы для всех осей (что не является обязательным). OX - ось абсцисс, OY - ось ординат, OZ - ось аппликат.

Если большой палец правой руки принять за направление X , указательный за направление Y , а средний за направление Z , то образуется правая система координат.

Аналогичными пальцами левой руки образуется левая система координат.

Иначе говоря, положительное направление осей выбирают так, чтобы при повороте оси OX против часовой стрелки на 90° её положительное направление совпало с положительным направлением оси OY , если этот поворот наблюдать со стороны положительного направления оси OZ . Правую и левую системы координат невозможно совместить так, чтобы совпали соответствующие оси.

Положение точки A в пространстве определяется тремя координатами x , y и z . Координата x равна длине отрезка OB , координата y - длине отрезка OC , координата z - длине отрезка OD в выбранных единицах измерения. Отрезки OB , OC и OD определяются плоскостями, проведёнными из точки A параллельно плоскостям YOZ , XOZ и XOY соответственно. Координата x называется абсциссой точки A , координата y - ординатой точки A , координата z - аппликатой точки A . Записывают так: .

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Если через точку пространства проведены три попарно перпендикулярные прямые, на каждой из которых выбрано направление и единичный отрезок, то говорят, что задана прямоугольная система координат в пространстве.

Прямые с выбранными на них направлениями называются осями координат и обозначаются так: Ох, Оy, Оz, имеют свои названия: ось абсцисс, ось ординат и ось аппликат соответственно, а их общая точка - началом координат. Обычно она обозначается буквой О.

Вся система координат обозначается Охуz.

Если через оси координат Ох и Оу, Оу и Оz, Оz и Ох провести плоскости, то такие плоскости будут называться координатными плоскостями и обозначаться: Оху, Оуz, Оzх соответственно.

Точка О разделяет каждую из осей координат на два луча. Луч, направление которого совпадает с направлением оси, называется положительной полуосью, а другой луч — отрицательной полуосью.

В прямоугольной системе координат каждой точке М пространства сопоставляется тройка чисел, которые называются ее координатами. Они определяются аналогично координатам точек на плоскости.

Посмотрим, как это делается.

Проведем через точку М три плоскости, перпендикулярные осям координат, и обозначим через М₁, М₂ и М₃ точки пересечения этих плоскостей соответственно с осями абсцисс, ординат и аппликат.

Первая координата точки М (она называется абсциссой и обозначается обычно буквой х) определяется так: х = ОМ₁, если М₁ - точка положительной полуоси;

х= - ОМ₁, если М₁ - точка отрицательной полуоси; х =0, если М₁ совпадает с точкой О.

Аналогично с помощью точки М₂ определяется вторая координата (ордината) у точки М,

а с помощью точки М₃ — третья координата (аппликата) z точки М.

Координаты точки М записываются в скобках после обозначения точки М (х; у; z).

Запомните, что первой указывают абсциссу, второй - ординату, третьей — аппликату.

Найдем координаты точек А, В, С, D, E, F, представленные на рисунке.

Проведем через точку А три плоскости, перпендикулярные к осям координат, тогда точки пересечения этих плоскостей соответственно с осями абсцисс, ординат и аппликат будут координатами точки А. Точка А имеет координаты: абсцисса = 9, ордината = 5, аппликата = 10 и записывается это так: А (9; 5;10).

Аналогично записываются координаты следующих точек:

Точка В имеет координаты: абсцисса = 4, ордината = -3, аппликата = 6

Точка С имеет координаты: абсцисса = 9, ордината = 0, аппликата = 0

Точка имеет D координаты: абсцисса = 4, ордината = 0, аппликата = 5

Точка Е имеет координаты: абсцисса = 0, ордината = 8, аппликата = 0

Точка F имеет координаты: абсцисса = 0, ордината = 0, аппликата = -3

Если точка М (х; у; z) лежит на координатной плоскости на оси координат, то некоторые ее координаты равны нулю.

Если МЄОху (точка М принадлежит плоскости Оху), то аппликата точки М равна нулю: z=0.

Аналогично, если МЄОхz (точка М принадлежит плоскости Оxz), то у = 0, а если МЄОуz (точка М принадлежит плоскости Oyz), то х = 0.

Если МЄОх (точка М лежит на оси абсцисс) ордината и аппликата точки М равны нулю: у=о и z=0. В нашем примере это точка С.

Если МЄОу (точка М лежит на оси ординат), то х=0 и z=0. В нашем примере это точка Е.

Если МЄОz (точка М лежит на оси аппликат), то х = 0 и у = 0. В нашем примере это точка F.

Если все три координаты точки М равны нулю, то это значит, что М=О (0; 0; 0) - начало координат.

Даны координаты четырех вершин куба ABCDA 1 B 1 C 1 D 1: A(0; 0; 0); B(0; 0; 1); D(0; 1; 0); A 1 (1; 0; 0). Найдите координаты остальных вершин куба.

Так как фигура — куб, то все стороны равны единице, все грани являются квадратами.

Точка С принадлежит плоскости Оху, то есть ее координата z равна нулю, координата х равна стороне СД и равна АВ, значит равна единице, координата игрек равна стороне куба СВ, значит равна АД и равна единице.

Аналогично, Точка В 1 принадлежи плоскости Охz, то еcть ее координата y равна нулю, координата х равна стороне координата х равна стороне А1B1 и равна АВ значит равна единице, координата зет равна стороне куба В В1значит равна АА1 и равна единице.

Точка Д 1 принадлежи плоскости Оуz, то еcть ее координата х равна нулю, координата у равна стороне А 1 Д 1 и равна АД, значит равна единице, координата зет равна стороне куба А 1 В 1 , значит равна АВ и равна единице.

Точка С 1 не принадлежит никакой плоскости, то еcть все координаты отличны от нуля, координата х равна стороне C 1 D 1 и равна АB, значит равна единице, координата игрек равна стороне куба В 1 С 1 , значит равна АД и равна единице, и координата зет равна стороне CC 1 , то есть AA 1 и также равна единице.

Найдите координаты проекций точки C(; ;) на координатные плоскости Oxy, Oxz, Oyz и координатные оси Ox, Oy, Oz.

1) опустим перпендикуляры на плоскость Oxy— это CN, на плоскость Oxz - CL, и на плоскость Oyz прямая CR.

Таким образом, проекция точки С на плоскость Oxy это точка N и она имеет координаты икс равный минус корень из трех, игрек равен минус корень из двух на два, зет равнен нулю.

Проекция точки С на плоскость Oxz - это точка L и она имеет координаты икс равен минус корень из трех, игрек равен нулю, зет равен корень из пяти минус корень из трех.

Проекция точки С на плоскость Oyz- это точка R и она имеет координаты икс равен нулю, игрек равен минус корень из двух на два, зет равен корень из пяти минус корень из трех.

2)Из точки N проводим перпендикуляры на ось Ох - прямая NK, а на Оу - прямая NG, и на ось Оz проводим перпендикуляр из точки R- это прямая RP.

Проекция точки С на ось Ох - точка К имеет координаты икс равный минус корень из трех, а игрек и зет равны нулю.

Проекция точки С на ось Оy- точка G имеет координаты икс и зет равны нулю, игрек равен минус корень из двух на два.

Проекция точки С на ось Оz- точка P имеет координаты икс и игрек равны нулю, зет равный корень из пяти минус корень из трех.

Упорядоченная система двух или трёх пересекающихся перпендикулярных друг другу осей с общим началом отсчёта (началом координат) и общей единицей длины называется прямоугольной декартовой системой координат .

Общая декартова система координат (аффинная система координат ) может включать и не обязательно перпендикулярные оси. В честь французского математика Рене Декарта (1596-1662) названа именно такая система координат, в которой на всех осях отсчитывается общая единица длины и оси являются прямыми.

Прямоугольная декартова система координат на плоскости имеет две оси, а прямоугольная декартова система координат в пространстве - три оси. Каждая точка на плоскости или в пространстве определяется упорядоченным набором координат - чисел в соответствии единице длины системы координат.

Заметим, что, как следует из определения, существует декартова система координат и на прямой, то есть в одном измерении. Введение декартовых координат на прямой представляет собой один из способов, с помощью которого любой точке прямой ставится в соответствие вполне определённое вещественное число, то есть координата.

Метод координат, возникший в работах Рене Декарта, ознаменовал собой революционную перестройку всей математики. Появилась возможность истолковывать алгебраические уравнения (или неравенства) в виде геометрических образов (графиков) и, наоборот, искать решение геометрических задач с помощью аналитических формул, систем уравнений. Так, неравенство z < 3 геометрически означает полупространство, лежащее ниже плоскости, параллельной координатной плоскости xOy и находящейся выше этой плоскости на 3 единицы.

С помощью декартовой системы координат принадлежность точки заданной кривой соответствует тому, что числа x и y удовлетворяют некоторому уравнению. Так, координаты точки окружности с центром в заданной точке (a ; b ) удовлетворяют уравнению (x - a )² + (y - b )² = R ² .

Прямоугольная декартова система координат на плоскости

Две перпендикулярные оси на плоскости с общим началом и одинаковой масштабной единицей образуют декартову прямоугольную систему координат на плоскости . Одна из этих осей называется осью Ox , или осью абсцисс , другую - осью Oy , или осью ординат . Эти оси называются также координатными осями. Обозначим через M x и M y соответственно проекции произвольной точки М на оси Ox и Oy . Как получить проекции? Проведём через точку М Ox . Эта прямая пересекает ось Ox в точке M x . Проведём через точку М прямую, перпендикулярную оси Oy . Эта прямая пересекает ось Oy в точке M y . Это показано на рисунке ниже.

x и y точки М будем называть соответственно величины направленных отрезков OM x и OM y . Величины этих направленных отрезков рассчитываются соответственно как x = x 0 - 0 и y = y 0 - 0 . Декартовы координаты x и y точки М абсциссой и ординатой . Тот факт, что точка М имеет координаты x и y , обозначается так: M (x , y ) .

Координатные оси разбивают плоскость на четыре квадранта , нумерация которых показана на рисунке ниже. На нём же указана расстановка знаков координат точек в зависимости от их расположения в том или ином квадранте.

Помимо декартовых прямоугольных координат на плоскости часто рассматривается также полярная система координат. О способе перехода от одной системы координат к другой - в уроке полярная система координат .

Прямоугольная декартова система координат в пространстве

Декартовы координаты в пространстве вводятся в полной аналогии с декартовыми координатами на плоскости.

Три взаимно перпендикулярные оси в пространстве (координатные оси) с общим началом O и одинаковой масштабной единицей образуют декартову прямоугольную систему координат в пространстве .

Одну из указанных осей называют осью Ox , или осью абсцисс , другую - осью Oy , или осью ординат , третью - осью Oz , или осью аппликат . Пусть M x , M y M z - проекции произвольной точки М пространства на оси Ox , Oy и Oz соответственно.

Проведём через точку М Ox Ox в точке M x . Проведём через точку М плоскость, перпендикулярную оси Oy . Эта плоскость пересекает ось Oy в точке M y . Проведём через точку М плоскость, перпендикулярную оси Oz . Эта плоскость пересекает ось Oz в точке M z .

Декартовыми прямоугольными координатами x , y и z точки М будем называть соответственно величины направленных отрезков OM x , OM y и OM z . Величины этих направленных отрезков рассчитываются соответственно как x = x 0 - 0 , y = y 0 - 0 и z = z 0 - 0 .

Декартовы координаты x , y и z точки М называются соответственно её абсциссой , ординатой и аппликатой .

Попарно взятые координатные оси располагаются в координатных плоскостях xOy , yOz и zOx .

Задачи о точках в декартовой системе координат

Пример 1.

A (2; -3) ;

B (3; -1) ;

C (-5; 1) .

Найти координаты проекций этих точек на ось абсцисс.

Решение. Как следует из теоретической части этого урока, проекция точки на ось абсцисс расположена на самой оси абсцисс, то есть оси Ox , а следовательно имеет абсциссу, равную абсциссе самой точки, и ординату (координату на оси Oy , которую ось абсцисс пересекает в точке 0), равную нулю. Итак получаем следующие координаты данных точек на ось абсцисс:

A x (2; 0) ;

B x (3; 0) ;

C x (-5; 0) .

Пример 2. В декартовой системе координат на плоскости даны точки

A (-3; 2) ;

B (-5; 1) ;

C (3; -2) .

Найти координаты проекций этих точек на ось ординат.

Решение. Как следует из теоретической части этого урока, проекция точки на ось ординат расположена на самой оси ординат, то есть оси Oy , а следовательно имеет ординату, равную ординате самой точки, и абсциссу (координату на оси Ox , которую ось ординат пересекает в точке 0), равную нулю. Итак получаем следующие координаты данных точек на ось ординат:

A y (0; 2) ;

B y (0; 1) ;

C y (0; -2) .

Пример 3. В декартовой системе координат на плоскости даны точки

A (2; 3) ;

B (-3; 2) ;

C (-1; -1) .

Ox .

Ox Ox Ox , будет иметь такую же абсциссу, что и данная точка, и ординату, равную по абсолютной величине ординате данной точки, и противоположную ей по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно оси Ox :

A" (2; -3) ;

B" (-3; -2) ;

C" (-1; 1) .

Решить задачи на декартову систему координат самостоятельно, а затем посмотреть решения

Пример 4. Определить, в каких квадрантах (четвертях, рисунок с квадрантами - в конце параграфа "Прямоугольная декартова система координат на плоскости") может быть расположена точка M (x ; y ) , если

1) xy > 0 ;

2) xy < 0 ;

3) x y = 0 ;

4) x + y = 0 ;

5) x + y > 0 ;

6) x + y < 0 ;

7) x y > 0 ;

8) x y < 0 .

Пример 5. В декартовой системе координат на плоскости даны точки

A (-2; 5) ;

B (3; -5) ;

C (a ; b ) .

Найти координаты точек, симметричных этим точкам относительно оси Oy .

Продолжаем решать задачи вместе

Пример 6. В декартовой системе координат на плоскости даны точки

A (-1; 2) ;

B (3; -1) ;

C (-2; -2) .

Найти координаты точек, симметричных этим точкам относительно оси Oy .

Решение. Поворачиваем на 180 градусов вокруг оси Oy направленный отрезок, идущий от оси Oy до данной точки. На рисунке, где обозначены квадранты плоскости, видим, что точка, симметричная данной относительно оси Oy , будет иметь такую же ординату, что и данная точка, и абсциссу, равную по абсолютной величине абсциссе данной точки, и противоположную ей по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно оси Oy :

A" (1; 2) ;

B" (-3; -1) ;

C" (2; -2) .

Пример 7. В декартовой системе координат на плоскости даны точки

A (3; 3) ;

B (2; -4) ;

C (-2; 1) .

Найти координаты точек, симметричных этим точкам относительно начала координат.

Решение. Поворачиваем на 180 градусов вокруг начала координат направленный отрезок, идущий от начала координат к данной точке. На рисунке, где обозначены квадранты плоскости, видим, что точка, симметричная данной относительно начала координат, будет иметь абсциссу и ординату, равные по абсолютной величине абсциссе и ординате данной точки, но противоположные им по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно начала координат:

A" (-3; -3) ;

B" (-2; 4) ;

C (2; -1) .

Пример 8.

A (4; 3; 5) ;

B (-3; 2; 1) ;

C (2; -3; 0) .

Найти координаты проекций этих точек:

1) на плоскость Oxy ;

2) на плоскость Oxz ;

3) на плоскость Oyz ;

4) на ось абсцисс;

5) на ось ординат;

6) на ось апликат.

1) Проекция точки на плоскость Oxy расположена на самой этой плоскости, а следовательно имеет абсциссу и ординату, равные абсциссе и ординате данной точки, и апликату, равную нулю. Итак получаем следующие координаты проекций данных точек на Oxy :

A xy (4; 3; 0) ;

B xy (-3; 2; 0) ;

C xy (2; -3; 0) .

2) Проекция точки на плоскость Oxz расположена на самой этой плоскости, а следовательно имеет абсциссу и апликату, равные абсциссе и апликате данной точки, и ординату, равную нулю. Итак получаем следующие координаты проекций данных точек на Oxz :

A xz (4; 0; 5) ;

B xz (-3; 0; 1) ;

C xz (2; 0; 0) .

3) Проекция точки на плоскость Oyz расположена на самой этой плоскости, а следовательно имеет ординату и апликату, равные ординате и апликате данной точки, и абсциссу, равную нулю. Итак получаем следующие координаты проекций данных точек на Oyz :

A yz (0; 3; 5) ;

B yz (0; 2; 1) ;

C yz (0; -3; 0) .

4) Как следует из теоретической части этого урока, проекция точки на ось абсцисс расположена на самой оси абсцисс, то есть оси Ox , а следовательно имеет абсциссу, равную абсциссе самой точки, а ордината и апликата проекции равны нулю (поскольку оси ординат и апликат пересекают ось абсцисс в точке 0). Получаем следующие координаты проекций данных точек на ось абсцисс:

A x (4; 0; 0) ;

B x (-3; 0; 0) ;

C x (2; 0; 0) .

5) Проекция точки на ось ординат расположена на самой оси ординат, то есть оси Oy , а следовательно имеет ординату, равную ординате самой точки, а абсцисса и апликата проекции равны нулю (поскольку оси абсцисс и апликат пересекают ось ординат в точке 0). Получаем следующие координаты проекций данных точек на ось ординат:

A y (0; 3; 0) ;

B y (0; 2; 0) ;

C y (0; -3; 0) .

6) Проекция точки на ось апликат расположена на самой оси апликат, то есть оси Oz , а следовательно имеет апликату, равную апликате самой точки, а абсцисса и ордината проекции равны нулю (поскольку оси абсцисс и ординат пересекают ось апликат в точке 0). Получаем следующие координаты проекций данных точек на ось апликат:

A z (0; 0; 5) ;

B z (0; 0; 1) ;

C z (0; 0; 0) .

Пример 9. В декартовой системе координат в пространстве даны точки

A (2; 3; 1) ;

B (5; -3; 2) ;

C (-3; 2; -1) .

Найти координаты точек, симметричных этим точкам относительно:

1) плоскости Oxy ;

2) плоскости Oxz ;

3) плоскости Oyz ;

4) оси абсцисс;

5) оси ординат;

6) оси апликат;

7) начала координат.

1) "Продвигаем" точку по другую сторону оси Oxy Oxy , будет иметь абсциссу и ординату, равные абсциссе и ординате данной точки, и апликату, равную по величине апликате данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oxy :

A" (2; 3; -1) ;

B" (5; -3; -2) ;

C" (-3; 2; 1) .

2) "Продвигаем" точку по другую сторону оси Oxz на то же расстояние. По рисунку, отображающему координатное пространство, видим, что точка, симметричная данной относительно оси Oxz , будет иметь абсциссу и апликату, равные абсциссе и апликате данной точки, и ординату, равную по величине ординате данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oxz :

A" (2; -3; 1) ;

B" (5; 3; 2) ;

C" (-3; -2; -1) .

3) "Продвигаем" точку по другую сторону оси Oyz на то же расстояние. По рисунку, отображающему координатное пространство, видим, что точка, симметричная данной относительно оси Oyz , будет иметь ординату и апликату, равные ординате и апликате данной точки, и абсциссу, равную по величине абсциссе данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oyz :

A" (-2; 3; 1) ;

B" (-5; -3; 2) ;

C" (3; 2; -1) .

По аналогии с симметричными точками на плоскости и точками пространства, симметричными данным относительно плоскостей, замечаем, что в случае симметрии относительно некоторой оси декартовой системы координат в пространстве, координата на оси, относительно которой задана симметрия, сохранит свой знак, а координаты на двух других осях будут теми же по абсолютной величине, что и координаты данной точки, но противоположными по знаку.

4) Свой знак сохранит абсцисса, а ордината и апликата поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси абсцисс:

A" (2; -3; -1) ;

B" (5; 3; -2) ;

C" (-3; -2; 1) .

5) Свой знак сохранит ордината, а абсцисса и апликата поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси ординат:

A" (-2; 3; -1) ;

B" (-5; -3; -2) ;

C" (3; 2; 1) .

6) Свой знак сохранит апликата, а абсцисса и ордината поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси апликат:

A" (-2; -3; 1) ;

B" (-5; 3; 2) ;

C" (3; -2; -1) .

7) По аналогии с симметрии в случае с точками на плоскости, в случае симметрии относительно начала координат все координаты точки, симметричной данной, будут равными по абсолютной величине координатам данной точки, но противоположными им по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно начала координат.

Прямоугольная (другие названия — плоская, двухмерная) система координат, названная по имени французского ученого Декарта (1596—1650) «декартовой системой координат на плоскости», образуется пересечением на плоскости под прямым углом (перпендикулярно) двух числовых осей так, что положительная полуось одной направлена вправо (ось x, или ось абсцисс), а второй — вверх (ось y, или ось ординат).

Точка пересечения осей совпадает с точкой 0 каждой из них и называется началом координат.

Для каждой из осей выбирается произвольный масштаб (единичный отрезок длины). Каждой точке плоскости соответствует одна пара чисел, названная координатами этой точки на плоскости. И наоборот, любой упорядоченной паре чисел соответствует одна точка плоскости, для которой эти числа являются координатами.

Первая координата точки называется абсциссой этой точки, а вторая координата — ординатой.

Вся плоскость координат делится на 4 квадранта (четверти). Квадранты расположены от первого до четвертого против часовой стрелки (см. рис.).

Чтобы определить координаты точки, нужно найти ее расстояние до оси абсцисс и оси ординат. Так как расстояние (кратчайшее) определяется по перпендикуляру, то из точки опускаются два перпендикуляра (вспомогательные линии на плоскости координат) на оси так, что точка их пересечения — это и есть место заданной точки в плоскости координат. Точки пересечения перпендикуляров с осями называются проекциями точки на оси координат.

Первый квадрант ограничен положительными полуосями абсцисс и ординат. Следовательно, координаты точек в этой четверти плоскости будут положительными
(знаки « + » и

Например, точка M (2; 4) на рисунке вверху.

Второй квадрант ограничен отрицательной полуосью абсцисс и положительной полуосью ординат. Следовательно, координаты точек по оси абсцисс будут отрицательными (знак «-»), а по оси ординат — положительными (знак « + »).

Например, точка C (-4; 1) на рисунке выше.

Третий квадрант ограничен отрицательной полуосью абсцисс и отрицательной полуосью ординат. Следовательно, координаты точек по оси абсцисс и оси ординат будут отрицательными (знаки «-» и «-»).

Например, точка D (-6; -2) на рисунке выше.

Четвертый квадрант ограничен положительной полуосью абсцисс и отрицательной полуосью ординат. Следовательно, координаты точек по оси абсцисс будут положительными (знак «+»). а по оси ординат - отрицательными (знак «-»).

Например, точка R (3; -3) на рисунке выше.

Построение точки по ее заданным координатам

    первую координату точки найдем на оси абсцисс и проведем через нее вспомогательную линию — перпендикуляр;

    вторую координату точки найдем на оси ординат и проведем через нее вспомогательную линию - перпендикуляр;

    точка пересечения двух перпендикуляров (вспомогательных линий) и будет соответствовать точке с заданными координатами.

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса