Подпишись и читай
самые интересные
статьи первым!

Как найти число всех возможных исходов. Независимые события и правило умножения. Определение ценности ставки

Нравится нам это или нет, но наша жизнь полна всевозможных случайностей, как приятных так и не очень. Поэтому каждому из нас не помешало бы знать, как найти вероятность того или иного события. Это поможет принимать верные решения при любых обстоятельствах, которые связаны с неопределенностью. К примеру, такие знания окажутся весьма кстати при выборе вариантов инвестирования, оценке возможности выигрыша в акции или лотерее, определении реальности достижения личных целей и т. д., и т. п.

Формула теории вероятности

В принципе, изучение данной темы не занимает слишком много времени. Для того чтобы получить ответ на вопрос: "Как найти вероятность какого-либо явления?", нужно разобраться с ключевыми понятиями и запомнить основные принципы, на которых базируется расчёт. Итак, согласно статистике, исследуемые события обозначаются через A1, А2,..., An. У каждого из них есть как благоприятствующие исходы (m), так и общее количество элементарных исходов. К примеру, нас интересует, как найти вероятность того, что на верхней грани кубика окажется четное число очков. Тогда А - это бросок m - выпадение 2, 4 или 6 очков (три благоприятствующих варианта), а n - это все шесть возможных вариантов.

Сама же формула расчета выглядит следующим образом:

С одним исходом все предельно легко. А вот как найти вероятность, если события идут одно за другим? Рассмотрим такой пример: из карточной колоды (36 шт.) показывается одна карта, затем она прячется снова в колоду, и после перемешивания вытаскивается следующая. Как найти вероятность того, что хоть в одном случае была вытащена дама пик? Существует следующее правило: если рассматривается сложное событие, которое можно разделить на несколько несовместимых простых событий, то можно сначала рассчитать результат для каждого из них, а затем сложить их между собой. В нашем случае это будет выглядеть так: 1 / 36 + 1 / 36 = 1 / 18 . А как же быть тогда, когда несколько происходят одновременно? Тогда результаты умножаем! Например, вероятность того, что при одновременном подбрасывании сразу двух монет выпадут две решки, будет равна: ½ * ½ = 0.25.

Теперь возьмем еще более сложный пример. Предположим, мы попали на книжную лотерею, в которой из тридцати билетов десять являются выигрышными. Требуется определить:

  1. Вероятность того, что оба окажутся выигрышными.
  2. Хотя бы один из них принесет приз.
  3. Оба окажутся проигрышными.

Итак, рассмотрим первый случай. Его можно разбить на два события: первый билет будет счастливым, и второй также окажется счастливым. Учтем, что события зависимы, поскольку после каждого вытаскивания общее количество вариантов уменьшается. Получаем:

10 / 30 * 9 / 29 = 0,1034.

Во втором случае понадобится определить вероятность проигрышного билета и учесть, что он может быть как первым по счету, так и вторым: 10 / 30 * 20 / 29 + 20 / 29 * 10 / 30 = 0,4598.

Наконец, третий случай, когда по разыгранной лотерее даже одной книжки получить не получится: 20 / 30 * 19 / 29 = 0,4368.

Наш ответ

Выбор правильной ставки зависит не только от интуиции, спортивных знаний, букмекерских коэффициентов, но и от коэффициента вероятности события. Возможность рассчитать подобный показатель в беттинге является залогом успеха в прогнозировании предстоящего события, на который предполагается осуществление ставки.
В букмекерских конторах существует три вида коэффициентов (подробней в статье ), от разновидности которых зависит, как рассчитать вероятность события игроку.

Десятичные коэффициенты

Расчет вероятности события в таком случае происходит по формуле: 1/коэф.соб. = в.и, где коэф.соб. – коэффициент события, а в.и – вероятность исхода. Например, берем коэффициент события 1,80 при ставке в один доллар, совершая математическое действие по формуле, игрок получает, что вероятность исхода события по версии букмекера 0,55 процента.

Дробные коэффициенты

При использовании дробных коэффициентов формула расчета вероятности будет другая. Так при коэффициенте 7/2, где первая цифра означает возможный размер чистой прибыли, а вторая размер необходимой ставки, для получения этой прибыли, уравнение будет выглядеть следующим образом: зн.коэф/ на сумму зн.коэф и чс.коэф = в.и. Здесь зн.коэф – знаменатель коэффициента, чс.коэф – числитель коэффициента, в.и – вероятность исхода. Таким образом, для дробного коэффициента 7/2 уравнение выглядит как 2 / (7+2) = 2 / 9 = 0.22, следовательно, 0,22 процента вероятность исхода события по версии букмекерской конторы.

Американские коэффициенты

Американские коэффициенты мало популярны у игроков и, как правило, используются исключительно в США, обладая сложной и запутанной структурой. Для ответа на вопрос: «Как посчитать вероятность события таким способом?», нужно знать, что подобные коэффициенты могут быть отрицательными и положительными.

Коэффициент со знаком «-», например -150, показывает, что игроку для получения чистой прибыли в 100 долларов необходимо совершить ставку в 150 долларов. Вероятность события рассчитывается исходя из формулы, где нужно разделить отрицательный коэффициент на сумму отрицательного коэффициента и 100. Выглядит это на примере ставки -150, так (-(-150)) / ((-(-150)) + 100) = 150 / (150 + 100) = 150 / 250 = 0.6, где 0,6 умножается на 100 и исход вероятности события составляет 60 процентов. Эта же формула подходит и для положительных американских коэффициентов.

Это отношение количества тех наблюдений, при которых рассматриваемое событие наступило, к общему количеству наблюдений. Такая трактовка допустима в случае достаточно большого количества наблюдений или опытов. Например, если среди встреченных на улице людей примерно половина - женщины, то можно говорить, что вероятность того, что встреченный на улице человек окажется женщиной, равна 1/2. Другими словами, оценкой вероятности события может служить частота его наступления в длительной серии независимых повторений случайного эксперимента .

Вероятность в математике

В современном математическом подходе классическая (то есть не квантовая) вероятность задаётся аксиоматикой Колмогорова . Вероятностью называется мера P , которая задаётся на множестве X , называемом вероятностным пространством . Эта мера должна обладать следующими свойствами:

Из указанных условий следует, что вероятностная мера P также обладает свойством аддитивности : если множества A 1 и A 2 не пересекаются, то . Для доказательства нужно положить все A 3 , A 4 , … равными пустому множеству и применить свойство счётной аддитивности.

Вероятностная мера может быть определена не для всех подмножеств множества X . Достаточно определить её на сигма-алгебре , состоящей из некоторых подмножеств множества X . При этом случайные события определяются как измеримые подмножества пространства X , то есть как элементы сигма-алгебры .

Вероятность смысле

Когда мы находим, что основания для того, чтобы какой-нибудь возможный факт произошел в действительности, перевешивают противоположные основания, мы считаем этот факт вероятным , в противном случае - невероятным . Этот перевес положительных оснований над отрицательными, и наоборот, может представлять неопределённое множество степеней, вследствие чего вероятность невероятность ) бывает большею или меньшею .

Сложные единичные факты не допускают точного вычисления степеней своей вероятности, но и здесь важно бывает установить некоторые крупные подразделения. Так, например, в области юридической , когда подлежащий суду личный факт устанавливается на основании свидетельских показаний, он всегда остаётся, строго говоря, лишь вероятным, и необходимо знать, насколько эта вероятность значительна; в римском праве здесь принималось четверное деление: probatio plena (где вероятность практически переходит в достоверность ), далее - probatio minus plena , затем - probatio semiplena major и, наконец, probatio semiplena minor .

Кроме вопроса о вероятности дела, может возникать, как в области права, так и в области нравственной (при известной этической точке зрения) вопрос о том, насколько вероятно, что данный частный факт составляет нарушение общего закона. Этот вопрос, служащий основным мотивом в религиозной юриспруденции Талмуда , вызвал и в римско-католическом нравственном богословии (особенно с конца XVI века) весьма сложные систематические построения и огромную литературу, догматическую и полемическую (см. Пробабилизм) .

Понятие вероятности допускает определенное численное выражение в применении лишь к таким фактам, которые входят в состав определенных однородных рядов. Так (в самом простом примере), когда кто-нибудь бросает сто раз кряду монету, мы находим здесь один общий или большой ряд (сумма всех падений монеты), слагающийся из двух частных или меньших, в данном случае численно равных, рядов (падения «орлом» и падения «решкой»); Вероятность, что в данный раз монета упадет решкой, то есть что этот новый член общего ряда будет принадлежать к этому из двух меньших рядов, равняется дроби, выражающей численное отношение между этим малым рядом и большим, именно 1/2, то есть одинаковая вероятность принадлежит к тому или другому из двух частных рядов. В менее простых примерах заключение не может быть выведено прямо из данных самой задачи, а требует предварительной индукции . Так, например, спрашивается: какая вероятность существует для данного новорожденного дожить до 80 лет? Здесь должно составить общий, или большой, ряд из известного числа людей, рожденных в подобных же условиях и умирающих в различном возрасте (это число должно быть достаточно велико, чтобы устранить случайные отклонения, и достаточно мало, чтобы сохранялась однородность ряда, ибо для человека, рождённого, например, в Санкт-Петербурге в обеспеченном культурном семействе, всё миллионное население города, значительная часть которого состоит из лиц разнообразных групп, могущих умереть раньше времени - солдат, журналистов, рабочих опасных профессий, - представляет группу слишком разнородную для настоящего определения вероятности); пусть этот общий ряд состоит из десяти тысяч человеческих жизней; в него входят меньшие ряды, представляющие число доживающих до того или другого возраста; один из этих меньших рядов представляет число доживающих до 80 лет. Но определить численность этого меньшего ряда (как и всех других) невозможно a priori ; это делается чисто индуктивным путем, посредством статистики . Положим, статистические исследования установили, что из 10000 петербуржцев среднего класса до 80 лет доживают только 45; таким образом, этот меньший ряд относится к большому, как 45 к 10000, и вероятность для данного лица принадлежать к этому меньшему ряду, то есть дожить до 80 лет, выражается дробью 0,0045. Исследование вероятности с математической точки зрения составляет особую дисциплину - теорию вероятностей .

См. также

Примечания

Литература

  • Альфред Реньи. Письма о вероятности / пер. с венг. Д.Сааса и А.Крамли под ред. Б. В. Гнеденко. М.: Мир. 1970
  • Гнеденко Б. В. Курс теории вероятностей. М., 2007. 42 с.
  • Купцов В. И. Детерминизм и вероятность. М., 1976. 256 с.

Wikimedia Foundation . 2010 .

Синонимы :

Антонимы :

Смотреть что такое "Вероятность" в других словарях:

    Общенаучная и филос. категория, обозначающая количественную степень возможности появления массовых случайных событий при фиксированных условиях наблюдения, характеризующую устойчивость их относительных частот. В логике семантическая степень… … Философская энциклопедия

    ВЕРОЯТНОСТЬ, число в интервале от нуля до единицы включительно, представляющее возможность свершения данного события. Вероятность события определяется как отношение числа шансов того, что событие может произойти, к общему количеству возможных… … Научно-технический энциклопедический словарь

    По всей вероятности.. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. вероятность возможность, вероятие, шанс, объективная возможность, маза, допустимость, риск. Ant. невозможность… … Словарь синонимов

    вероятность - Мера того, что событие может произойти. Примечание Математическое определение вероятности: «действительное число в интервале от 0 до 1, относящееся к случайному событию». Число может отражать относительную частоту в серии наблюдений… … Справочник технического переводчика

    Вероятность - «математическая, числовая характеристика степени возможности появления какого либо события в тех или иных определенных, могущих повторяться неограниченное число раз условиях». Если исходить из этого классического… … Экономико-математический словарь

    - (probability) Возможность наступления какого либо события или определенного результата. Может быть представлена в виде шкалы с делениями от 0 до 1. При нулевой вероятности события его наступление невозможно. При вероятности, равной 1, наступление … Словарь бизнес-терминов

Классическое и статистическое определение вероятности

Для практической деятельности необходимо уметь сравнивать события по степени возможности их наступления. Рассмотрим классический случай. В урне находится 10 шаров, 8 из них белого цвета, 2 черного. Очевидно, что событие «из урны будет извлечен шар белого цвета» и событие «из урны будет извлечен шар черного цвета» обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная количественная мера.

Количественной мерой возможности наступления события является вероятность . Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Остановимся на этом подробнее.

Пусть исходы некоторого испытания образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Такие исходы называют элементарными исходами , или случаями . При этом говорят, что испытание сводится к схеме случаев или «схеме урн », т.к. любую вероятностную задачу для подобного испытания можно заменить эквивалентной задачей с урнами и шарами разных цветов.

Исход называется благоприятствующим событию А , если появление этого случая влечет за собой появление события А .

Согласно классическому определению вероятность события А равна отношению числа исходов, благоприятствующих этому событию, к общему числу исходов , т.е.

, (1.1)

где Р(А) – вероятность события А ; m – число случаев благоприятствующих событию А ; n общее число случаев.

Пример 1.1. При бросании игральной кости возможны шесть исходов – выпадение 1, 2, 3, 4, 5, 6 очков. Какова вероятность появления четного числа очков?

Решение. Все n = 6 исходов образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Событию А – «появление четного числа очков» – благоприятствуют 3 исхода (случая) – выпадение 2, 4 или 6 очков. По классической формуле вероятности события получаем

Р(А) = = .

Исходя из классического определения вероятности события, отметим ее свойства:

1. Вероятность любого события заключена между нулем и единицей, т.е.

0 ≤ Р (А ) ≤ 1.

2. Вероятность достоверного события равна единице.

3. Вероятность невозможного события равна нулю.

Как было сказано ранее, классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

Например, если допустить, что монета сплющена, то очевидно, что события «появление герба» и «появление решки» нельзя считать равновозможными. Поэтому формула для определения вероятности по классической схеме в данном случае неприменима.

Однако существует другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определениевероятности.

Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.

, (1.2)

где Р * (А) – статистическая вероятность события А ; w(A) – относительная частота события А ; m – число испытаний, в которых появилось событие А ; n – общее число испытаний.

В отличие от математической вероятности Р(А) , рассматриваемой в классическом определении, статистическая вероятность Р * (А) является характеристикой опытной , экспериментальной . Иначе говоря, статистической вероятностью события А называется число, относительно которого стабилизируется (устанавливается) относительная частота w(А) при неограниченном увеличении числа испытаний, проводимых при одном и том же комплексе условий.

Например, когда про стрелка говорят, что он попадает в цель с вероятностью 0,95, то это означает, что из сотни выстрелов, произведенных им при определенных условиях (одна и та же цель на том же расстоянии, та же винтовка и т.д.), в среднем бывает примерно 95 удачных. Естественно, не в каждой сотне будет 95 удачных выстрелов, иногда их будет меньше, иногда больше, но в среднем при многократном повторении стрельбы в тех же условиях этот процент попаданий будет оставаться неизменным. Цифра 0,95, служащая показателем мастерства стрелка, обычно очень устойчива , т.е. процент попаданий в большинстве стрельб будет для данного стрелка почти один и тот же, лишь в редких случаях отклоняясь сколько-нибудь значительно от своего среднего значения.

Еще одним недостатком классического определения вероятности (1.1 ), ограничивающим его применение, является то, что оно предполагает конечное число возможных исходов испытания. В некоторых случаях этот недостаток можно преодолеть, используя геометрическое определение вероятности, т.е. находя вероятность попадания точки в некоторую область (отрезок, часть плоскости и т.п.).

Пусть плоская фигура g составляет часть плоской фигуры G (рис. 1.1). На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны» в отношении попадания на нее брошенной случайной точки. Полагая, что вероятность события А – попадания брошенной точки на фигуру g – пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G , ни от формы g , найдем

При оценки вероятности наступления какого-либо случайного события очень важно предварительно хорошо представлять, зависит ли вероятность () наступления интересующего нас события от того, как развиваются остальные события.

В случае классической схемы, когда все исходы равновероятны, мы уже можем оценить значения вероятности интересующего нас отдельного события самостоятельно. Мы можем сделать это даже в том случае, если событие является сложной совокупностью нескольких элементарных исходов. А если несколько случайных событий происходит одновременно или последовательно? Как это влияет на вероятность реализации интересующего нас события?

Если я несколько раз кидаю игральную кость, и хочу, чтобы выпала "шестерка", а мне все время не везет, значит ли это, что надо увеличивать ставку, потому что, согласно теории вероятностей, мне вот-вот должно повезти? Увы, теория вероятности не утверждает ничего подобного. Ни кости, ни карты, ни монетки не умеют запоминать, что они продемонстрировали нам в прошлый раз. Им совершенно не важно, в первый раз или в десятый раз сегодня я испытываю свою судьбу. Каждый раз, когда я повторяю бросок, я знаю только одно: и на этот раз вероятность выпадения "шестерки" снова равна одной шестой. Конечно, это не значит, что нужная мне цифра не выпадет никогда. Это означает лишь то, что мой проигрыш после первого броска и после любого другого броска - независимые события.

События А и В называются независимыми , если реализация одного из них никак не влияет на вероятность другого события. Например, вероятности поражения цели первым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события "первое орудие поразило цель" и "второе орудие поразило цель" независимы.

Если два события А и В независимы, и вероятность каждого из них известна, то вероятность одновременного наступления и события А, и события В (обозначается АВ) можно посчитать, воспользовавшись следующей теоремой.

Теорема умножения вероятностей для независимых событий

P(AB) = P(A)*P(B) - вероятность одновременного наступления двух независимых событий равна произведению вероятностей этих событий.

Пример. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р 1 =0,7; р 2 =0,8. Найти вероятность попадания при одном залпе обоими орудиями одновременно.

Решение: как мы уже видели события А (попадание первого орудия) и В (попадание второго орудия) независимы, т.е. Р(АВ)=Р(А)*Р(В)=р 1 *р 2 =0,56.


Что произойдет, с нашими оценками, если исходные события не являются независимыми? Давайте немного изменим предыдущий пример.

Пример. Два стрелка на соревнованиях стреляют по мишеням, причем, если один из них стреляет метко, то соперник начинает нервничать, и его результаты ухудшаются. Как превратить эту житейскую ситуацию в математическую задачу и наметить пути ее решения? Интуитивно понятно, что надо каким-то образом разделить два варианта развития событий, составить по сути дела два сценария, две разные задачи. В первом случае, если соперник промахнулся, сценарий будет благоприятный для нервного спортсмена и его меткость будет выше. Во втором случае, если соперник прилично реализовал свой шанс, вероятность поразить мишень для второго спортсмена снижается.


Для разделения возможных сценариев (их часто называют гипотезами) развития событий мы будем часто использовать схему "дерева вероятностей". Эта схема похожа по смыслу на дерево решений, с которым Вам, наверное, уже приходилось иметь дело. Каждая ветка представляет собой отдельный сценарий развития событий, только теперь она имеет собственное значение так называемой условной вероятности (q 1 , q 2 , q 1 -1, q 2 -1).


Эта схема очень удобна для анализа последовательных случайных событий.

Остается выяснить еще один немаловажный вопрос: откуда берутся исходные значения вероятностей в реальных ситуациях ? Ведь не с одними же монетами и игральными костями работает теория вероятностей? Обычно эти оценки берутся из статистики, а когда статистические сведения отсутствуют, мы проводим собственное исследование. И начинать его нам часто приходится не со сбора данных, а с вопроса, какие сведения нам вообще нужны.

Пример. Допустим, нам надо оценить в городе с населением в сто тысяч жителей объем рынка для нового товара, который не является предметом первой необходимости, например, для бальзама по уходу за окрашенными волосами. Рассмотрим схему "дерева вероятностей". При этом значение вероятности на каждой "ветке" нам надо приблизительно оценить. Итак, наши оценки емкости рынка:

1) из всех жителей города женщин 50%,

2) из всех женщин только 30% красят волосы часто,

3) из них только 10% пользуются бальзамами для окрашенных волос,

4) из них только 10% могут набраться смелости попробовать новый товар,

5) из них 70% обычно покупает все не у нас, а у наших конкурентов.




Решение: По закону перемножения вероятностей, определяем вероятность интересующего нас события А ={житель города покупает у нас этот новый бальзам}=0,00045.

Умножим это значение вероятности на число жителей города. В результате имеем всего 45 потенциальных покупательниц, а если учесть, что одного пузырька этого средства хватает на несколько месяцев, не слишком оживленная получается торговля.

И все-таки польза от наших оценок есть.

Во-первых, мы можем сравнивать прогнозы разных бизнес-идей, на схемах у них будут разные "развилки", и, конечно, значения вероятности тоже будут разные.

Во-вторых, как мы уже говорили, случайная величина не потому называется случайной, что она совсем ни от чего не зависит. Просто ее точное значение заранее не известно. Мы знаем, что среднее количество покупателей может быть увеличено (например, с помощью рекламы нового товара). Так что имеет смысл сосредоточить усилия на тех "развилках", где распределение вероятностей нас особенно не устраивает, на тех факторах, на которые мы в состоянии повлиять.

Рассмотрим еще один количественный пример исследования покупательского поведения.

Пример. За день продовольственный рынок посещает в среднем 10000 человек. Вероятность того, что посетитель рынка заходит в павильон молочных продуктов, равна 1/2. Известно, что в этом павильоне в среднем продается в день 500 кг различных продуктов.

Можно ли утверждать, что средняя покупка в павильоне весит всего 100 г?

Обсуждение. Конечно, нельзя. Понятно, что не каждый, кто заходил в павильон, в результате что-то там купил.




Как показано на схеме, чтобы ответить на вопрос о среднем весе покупки, мы должны найти ответ на вопрос, какова вероятность того, что человек, зашедший в павильон, что-нибудь там купит. Если таких данных в нашем распоряжении не имеется, а нам они нужны, придется их получить самим, понаблюдав некоторое время за посетителями павильона. Допустим, наши наблюдения показали, что только пятая часть посетителей павильона что-то покупает.

Как только эти оценки нами получены, задача становится уже простой. Из 10000 человек, пришедших на рынок, 5000 зайдут в павильон молочных продуктов, покупок будет только 1000. Средний вес покупки равен 500 грамм. Интересно отметить, что для построения полной картины происходящего, логика условных "ветвлений" должна быть определена на каждом этапе нашего рассуждения так же четко, как если бы мы работали с "конкретной" ситуацией, а не с вероятностями.

Задачи для самопроверки

1. Пусть есть электрическая цепь, состоящая из n последовательно соединенных элементов, каждый из которых работает независимо от остальных.




Известна вероятность p невыхода из строя каждого элемента. Определите вероятность исправной работы всего участка цепи (событие А).

2. Студент знает 20 из 25 экзаменационных вопросов. Найдите вероятность того, что студент знает предложенные ему экзаменатором три вопроса.

3. Производство состоит из четырех последовательных этапов, на каждом из которых работает оборудование, для которого вероятности выхода из строя в течение ближайшего месяца равны соответственно р 1 , р 2 , р 3 и р 4 . Найдите вероятность того, что за месяц не случится ни одной остановки производства из-за неисправности оборудования.

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса