Подпишись и читай
самые интересные
статьи первым!

Нуклеотиды соединяются. Словарь

К 1944 г. О. Эйвери и его коллеги К. Маклеод и М. Маккарти открыли трансформирующую активность ДНК у пневмококков. Эти авторы продолжили работу Гриффита, описавшего феномен трансформации (передачи наследственных признаков) у бактерий. О. Эйвери, К. Маклеод, М. Маккарти показали, что при удалении белков, полисахаридов и РНК трансформация бактерий не нарушается, а при воздействии на индуцирующее вещество ферментом дезоксирибонуклеазой трансформирующая активность исчезает.

В этих экспериментах впервые была продемонстрирована генетическая роль молекулы ДНК. В 1952 г. А. Херши и М. Чейз подтвердили генетическую роль молекулы ДН К в опытах на бактериофаге Т2. Пометив его белок радиоактивной серой, а ДНК-радиоактивным фосфором,они инфицировали этим бактериальным вирусом кишечную палочку Е. coli. В потомстве фага было выявлено большое количество радиоактивного фосфора и лишь следы S. Отсюда следовало, что именно ДНК, а не белок фага проникает в бактерию, а затем после репликации передается фаговому потомству.

    Строение нуклеотида ДНК. Типы нуклеотидов.

Нуклеотид ДНК состоит из

Азотистого основания (в ДНК 4 типа: аденин, тимин, цитозин, гуанин)

Моносахара дезоксирибозы

Фосфорной кислоты

Молекула нуклеотида состоит из трех частей - пятиуглеродного сахара, азотистого основания и фосфорной кислоты.

Сахар, входящий в состав нуклеотида , содержит пять углеродных атомов, т. е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два типа нуклеиновых кислот - рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дезоксирибозу. В дезоксирибозе - ОН-группа при 2-м атоме углерода заменена на атом Н, т. е. в ней на один атом кислорода меньше, чем в рибозе.

В обоих типах нуклеиновых кислот содержатся основания четырех разных видов: два из них относятся к классу пуринов и два - к классу пиримидинов. Основной характер этим соединениям придает включенный в кольцо азот. К числу пуринов относятся аденин (А) и гуанин (Г), а к числу пиримидинов - цитозин (Ц) и тимин (Т) или урацил (У) (соответственно в ДНК или РНК). Тимин химически очень близок к урацилу (он представляет собой 5-метилурацил, т. е. урацил, в котором у 5-го углеродного атома стоит метильная группа). В молекуле пуринов имеется два кольца, а в молекуле пиримидинов - одно.

Нуклеотиды соединяются между собой прочной ковалентной связью через сахар одного нуклеотида и фосфорную кислоту другого. Получаетсяполинуклеотидная цепь . На одном ее конце – свободная фосфорная кислота (5’-конец), на другом – свободный сахар (3’-конец). (ДНК-полимераза может присоединять новые нуклеотиды только к 3’-концу.)

Две полинуклеотидные цепи соединяются друг с другом слабыми водородными связями между азотистыми основаниями. Соблюдаются 2 правила:

    принцип комплементарности: напротив аденина всегда стоит тимин, напротив цитозина – гуанин (они подходят друг другу по форме и числу водородных связей – между А и Г две связи, между Ц и Г – 3).

    принцип антипараллельности: там, где у одной полинуклеотидной цепи 5’-конец, у другой – 3’-конец, и наоборот.

Получается двойная цепь ДНК.

Она скручивается в двойную спираль , один виток спирали имеет длину 3,4 нм, содержит 10 пар нуклеотидов. Азотистые основания (хранители генетической информации) находятся внутри спирали, защищенные.

    Структурная организация молекулы ДНК. Модель Дж.Уотсона и Ф.Крика

В 1950 г. английский физик М.Уилкинс получил рентгенограмму кристаллических волокон ДНК. Она показала, что молекула ДНК имеет определенную структуру, расшифровка которой помогла бы понять механизм функционирования ДНК. Рентгенограммы, полученные не на кристаллических волокнах ДНК, а на менее упорядоченных агрегатах, которые образуются при более высокой влажности, позволили Розалинд Франклин, коллеге М. Уилкинса, увидеть четкий крестообразный рисунок - опознавательный знак двойной спирали. Стало известно также, что нуклеотиды расположены друг от друга на расстоянии 0,34 нм, а на один виток спирали их приходится 10. Диаметр молекулы ДНК составляет около 2 нм. Из рентгеноструктурных данных, однако, было не ясно, каким образом цепи удерживаются вместе в молекулах ДНК.

Картина полностью прояснилась в 1953 г., когда американский биохимик Дж. Уотсон и английский физик Ф. Крик, исследуя структуру молекулы ДНК, пришли к выводу, что сахарофосфатный остов находится на периферии молекулы ДНК, а пуриновые и пиримидиновые основания - в середине. Причем последние ориентированы таким образом, что между основаниями из противоположных Цепей могут образоваться водородные связи. Из построенной ими модели выявилось, что какой-либо пурин в одной цепи всегда связан водородными связями с одним из пиримидинов в другой цепи. Такие пары имеют одинаковый размер по всей длине молекулы. Не менее важно то, что аденин может спариваться лишь с тимином, а гуанин только с с цитозином. При этом между аденином и тимином образуются две водородные связи, а между гуанином и цитозином – три.

    Свойства и функции ДНК.

    Хранение наследственной информации (генетический код – способ записи ген.информации о последовательности аминокислот в белке с помощью нуклеотидов (Гамов)

    Передача (репликация/удвоение)

    Реализация (транскрипция)

    Ауторепродукция ДНК. Репликон и его функционирование.

Процесс самовоспроизведения молекул нуклеиновых кислот, сопровождающийся передачей по наследству (от клетки к клетке) точных копий генетической информации; осуществляется с участием набора специфических ферментов (геликаза, контролирующая расплетание молекулы ДНК, ДНК-полимеразы, ДНК-лигаза), проходит по полуконсервативному типу с образованием репликативной вилки; на одной из цепей синтез комплементарной цепи непрерывен, а на другой происходит за счет образования фрагментов Дказаки. Высокоточный процесс, частота ошибок при котором не превышает 10 -9 ; у эукариот может происходить сразу в нескольких точках одной молекулы ДНК; скорость у эукариот около 100, а у бактерий - около 1000 нуклеотидов в сек.

Репликон - единица процесса репликации участка генома, который находится под контролем одной точки инициации (начала) репликации. Термин предложен Ф. Жакобом и С. Бреннером в 1963 году. Геном прокариот представляет собой, как правило, один репликон. От точки инициации репликация идёт в обе стороны, в некоторых случаях с неравной скоростью. У эукариот геном состоит из многих (часто до неск. десятков тысяч) репликонов.

    Генетический код, его свойства.

Генетический код – способ записи генетической инофрмации о последовательности аминокислот в белке с помощью нуклеотидов. Открытие ген. Кода принадлежит Георгию Гамову. 1954год.

    Триплетность - значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).

    Непрерывность - между триплетами нет знаков препинания, то есть информация считывается непрерывно.

    Неперекрываемость - один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).

    Однозначность (специфичность) - определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты - цистеин и селеноцистеин)

    Вырожденность (избыточность) - одной и той же аминокислоте может соответствовать несколько кодонов.

    Универсальность - генетический код работает одинаково в организмах разного уровня сложности - от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).

    Помехоустойчивость - мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными ; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными .

    Понятие о гене. Свойства Гена.

Ген - структурная и функциональная единица наследственности живых организмов. Ген представляет собой последовательность ДНК, задающую последовательность определённого полипептида либо функциональной РНК. Гены определяют наследственные признаки организмов, передающиеся от родителейпотомству при размножении. При этом некоторые органеллы (митохондрии, пластиды) имеют собственную ДНК, не входящую в геном организма, которая определяет их признаки.

(Термин введен в 1909 году датским ботаником Вильгельмом Йогансеном)

    дискретность - несмешиваемость генов;

    стабильность - способность сохранять структуру;

    лабильность - способность многократно мутировать;

    множественный аллелизм - многие гены существуют в популяции во множестве молекулярных форм;

    аллельность - в генотипе диплоидных организмов только две формы гена;

    специфичность - каждый ген кодирует свой признак;

    плейотропия - множественный эффект гена;

    экспрессивность - степень выраженности гена в признаке;

    пенетрантность - частота проявления гена в фенотипе;

    амплификация - увеличение количества копий гена.

    Особенности организации генома эукариот.

Геном эукариот:

    большое число генов,

    большее количество ДНК,

    в хромосомах имеется очень сложная система контроля активности генов во времени и пространстве, связанная с дифференциацией клеток и тканей в онтогенезе организма.

Количество ДНК в хромосомах велико и возрастает по мере усложнения организмов. Для эукариот также характернаизбыточность генов. Так, у человека геном содержит число нуклеотидных пар, достаточное для образования более 2 млн. структурных генов, в то время как у человека имеется по данным 2000 года 31 тыс. всех генов.

Больше половины гаплоидного набора генома эукариотов составляют уникальные гены, представленные лишь по одному разу. У человека таких уникальных генов - 64%, у теленка - 55%, у дрозофилы - 70%.

    Классы нуклеотидных последовательностей в ДНК эукариот, их характеристика, свойства и биологичесок значение.

Нуклеотидные последовательности в геноме эукариот

В конце 60-х годов работами американских ученых Р. Бриттена, Э. Дэвидсона и других была открыта фунда­ментальная особенность молекулярной структуры генома эукариот – нуклеотидные последовательности разной степени повторяемости. Это открытие было сделано с по­мощью молекулярно-биологического метода изучения кинетики ренатурации денатурированной ДНК. Различают следующие фракции в геноме эукариот.

1. Уникальные, т.е. последовательности, представ­ленные в одном экземпляре или немногими копиями. Как правило, это цистроны – структурные гены, кодирующие белки.

2. Низкочастотные повторы – последовательности, повторяющиеся десятки раз.

3. Промежуточные, или среднечастотные, повторы – последовательности, повторяющиеся сотни и тысячи раз. К ним относятся гены рРНК (у человека 200 на гаплоидный набор, у мыши – 100, у кошки – 1000, у рыб и цветковых растений – тысячи), тРНК, гены рибосомных белков и белков-гистонов.

4. Высокочастотные повторы, число которых достигает 10 миллионов (на геном). Это короткие (~ 10 пн) некодирующие последовательности, которые входят в состав прицентромерного гетерохроматина.

    Уровни организации генома эукариот.

    Химический и структурный состав хромосом.

Молекулярно-биологические исследования позволили получить представление не только о химической структуре хромосом, но также и об их надмолекулярной организации и особенностях функционирования. В настоящее время известно, что хромосомы представляют собой нуклеопротеидные образования, состоящие из ДНК и белка. Кроме того, в хромосомах присутствует некоторое количество РНК, образующейся при транскрипции, и ионы Са+ и Mg+. Каждая хроматида, а в промежутке времени анафаза- S -период интерфазы и хромосома, содержит одну молекулу ДНК, которая определяет все функции хромосомы, связанные с хранением наследственной информации, её передачей и реализацией. Молекула ДНК в хромосомах тесно связана с двумя классами белков- гистонами (основные белки) и негистонами (кислые белки). Гистоны - это небольшие по величине белки с высоким содержанием заряженных аминокислот (лизина и аргинина). Суммарный положительный заряд позволяет гистонам связываться с ДНК независимо от нуклеотидного состава. Им принадлежит в основном структурная функция. Это очень стабильные белки, молекулы которых могут сохраняться в течение всей жизни клетки. В эукариотической клетке присутствуют 5 типов гистонов, которые распределяются на две основные группы: первая группа (их обозначают как Н2А, Н2В, НЗ, Н4), отвечает за формирование специфических дезоксирибонуклеопротеидных комплексов - нуклеосом. Вторая группа гистонов (HI) располагается между нуклеосомами и фиксирует укладку нуклеосомной цепи в более высокий уровень структурной организации (супернуклеосомную нить). Среди гистоновых белков, кроме структурных, встречаются такие, которые способны ограничивать доступность ДНК для ДНК - связывающих регуляторных белков и тем самым участвовать в регуляции активности генов. Негистоновые белки весьма разнообразны. Число их фракций превышает 100. Они присутствуют в меньших количествах в хромосомах в сравнении с гистонами и выполняют в основном регуляторную функцию. Участвуют в регуляции транскрипционной активности генов, в обеспечении редупликации и репарации ДНК. Большинство негистоновых белков хроматина присутствуют в клетках в небольшом количестве (минорные) - это регуляторные белки, узнающие специфические последовательности ДНК и связывающиеся с ними. Они вовлечены во многие генетические процессы, но известно о них пока что немного. Количественно преобладают негистоновые белки (мажорные), высокоподвижные, относительно малого размера, с большим электрическим зарядом - они всегда соединяются с нуклеосомами, содержащими активные гены. Кроме того, в группу негистоновых белков входит много ферментов.

    Уровни упаковки наследственного материала у эукариот.

Таким образом, уровни упаковки ДНК следующие:

1) Нуклеосомный (2,5 оборота двуспиральной ДНК вокруг восьми молекул гистоновых белков).

2) Супернуклеосомный - хроматиновая спираль (хромонема).

3) Хроматидный - спирализованная хромонема.

4) Хромосома - четвертая степень сперализации ДНК.

В интерфазном ядре хромосомы деконденсированы и представлены хроматином. Деспирализованный участок, содержащий гены, называется эухроматин (разрыхленный, волокнистый хроматин). Это необходимое условие для транскрипции. Во время покоя между делениями определенные участки хромосом и целые хромосомы остаются компактными.

Эти спирализованные, сильно окрашивающиеся участки, называются гетерохроматином. Они неактивны в отношении транскрипции. Различают факультативный и конститутивный гетерохроматин.

Факультативный гетерохроматин информативен, т.к. содержит гены и может переходить в эухроматин. Из двух гомологичных хромосом одна может гетерохроматической. Конститутивный гетерохроматин всегда гетерохроматичен, неиформативен (не содержит генов) и поэтому всегда неактивен в отношении транскрипции.

Хромосомная ДНК состоит из более 10 8 пар оснований, из которых образуется информативные блоки - гены, расположенные линейно. На их долю приходится до 25% ДНК. Ген - функциональная единица ДНК, содержащая информацию для синтеза полипептидов, или всех РНК. Между генами находятся спейсеры - неинформативные отрезки ДНК разной длины. Избыточные гены представлены большим числом - 10 4 идентичных копий. Примером являются гены для т-РНК, р-РНК, гистонов. В ДНК встречаются последовательности одних и тех же нуклеотидов. Они могут быть умеренно повторяющимися и высоко повторяющимися последовательностями. Умеренно повторяющиеся последовательности достигают 300 пар нуклеотидов с повторениями 10 2 - 10 4 и представляют чаще всего спейсеры, избыточные гены.

Высокоповторяющиеся последовательности (10 5 - 10 6) образуют конститутивный гетерохроматин. Около 75% всего хроматина не участвует в транскрипции, он приходится на высокоповторяющиеся последовательности и нетранскрибируемые спейсеры.

    Морфологические особенности метафазной хромосомы.

Митотическая суперкомпактизация хроматина делает возможным изучение внешнего вида хромосом с помощью световой микроскопии. В первой половине митоза они состоят из двух хроматид, соединенных между собой в области первичной перетяжки (центромеры или кинетохора ) особым образом организованного участка хромосомы, общего для обеих сестринских хроматид. Во второй половине митоза происходит отделение хроматид друг от друга. Из них образуются однонитчатые дочерние хромосомы, распределяющиеся между дочерними клетками.

В зависимости от места положения центромеры и длины плеч, расположенных по обе стороны от нее, различают несколько форм хромосом: равноплечие, или метацентрические (с центромерой посередине), неравноплечие, или субметацентрические (с центромерой, сдвинутой к одному из концов), палочковидные, или акроцентрические (с центромерой, расположенной практически на конце хромосомы), и точковые -очень небольшие, форму которых трудно определить (рис. 3.52). При рутинных методах окраски хромосом они различаются по форме и соотносительным размерам. При использовании методик дифференциальной окраски выявляется неодинаковая флуоресценция или распределение красителя по длине хромосомы, строго специфические для каждой отдельной хромосомы и ее гомолога (рис. 3.53).

Таким образом, каждая хромосома индивидуальна не только по заключенному в ней набору генов, но и по морфологии и характеру дифференциального окрашивания.

    Эу- и гетерохроматин, их биологическое значение.

Некото­рые хромосомы во время клеточного деления выглядят конденси­рованными и интенсивно окрашенными. Такие различия были названы гетеропикнозом. Для обозначения районов хромосом, демонстрирующих положительный гетеропик­ноз на всех стадиях митотического цикла был предложен термин «гетерохроматин». Различают эухроматин - основную часть митотических хромосом, которая претерпевает обычный цикл компактизации декомпактизации во время ми­тоза, и гетерохроматин - участки хромосом, постоянно находящиеся в компактном состоя­нии.

У большинства видов эукариот хромосо­мы содержат как эу-, так и гетерохроматино­вые участки, причем последние составляют значительную часть генома. Гетерохроматин располагается в прицентромерных, иногда в прителомерных областях. Обнаружены гетерохроматиновые участки в эухроматиновых плечах хромосом. Они выглядят как вкрапления (интеркаляции) гетерохроматина в эухроматин. Такой гетеро­хроматин называют интеркалярным. Компактизация хроматина. Эухроматин и гетерохроматин различаются по циклам компактизации. Эухр. проходит полный цикл компактизации-декомпактизации от интерфазы до интерфазы, гетеро. сохраняет состояние от­носительной компактности. Дифференциальная окрашиваемость. Разные участки гетерохроматина окраши­ваются разными красителями, некоторые рай­оны - каким-то одним, другие - несколькими. Применяя различные красители и используя хромосомные перестройки, разры­вающие гетерохроматиновые районы, у дрозо­филы удалось охарактеризовать много неболь­ших районов, где сродство к окраскам отлично от соседних участках.

    Понятие о кариотипе (определение).Обща характеристика кариотипа человека.

Кариотип - диплоидный набор хромосом, свойственный соматическим клеткам организмов данного вида, являющийся видоспецифическим признаком и характеризующийся определенным числом, строением и генетическим составом хромосом.

Если число хромосом в гаплоидном наборе половых клеток обозначить п, то общая формула кариотипа будет выглядеть как 2п, где значение п различно у разных видов. Являясь видовой характеристикой организмов, кариотип может отличаться у отдельных особей некоторыми частными особенностями. Например, у представителей разного пола, имеются в основном одинаковые пары хромосом (аутосомы ), но их кариотипы отличаются по одной паре хромосом (гетерохромосомы, или половые хромосомы ). Иногда эти различия состоят в разном количестве гетерохромосом у самок и самцов (XX или ХО). Чаще различия касаются строения половых хромосом, обозначаемых разными буквами -X и Y (XX или XY).

Каждый вид хромосом в кариотипе, содержащий определенный комплекс генов, представлен двумя гомологами, унаследованными от родителей с их половыми клетками. Двойной набор генов, заключенный в кариотипе,- генотип - это уникальное сочетание парных аллелей генома. В генотипе содержится программа развития конкретной особи.

    Денверская (1960) и Парижская (1971) классификация хромосом человека: основные принципы и сущность.

Денверская и Парижская классификация хромосом Хромосомы подразделяются на аутосомы (соматических клеток) и гетерохромосомы (половых клеток). По предложению Левитского (1924) диплоидный набор соматических хромосом клетки был назван кариотипом. Он характеризуется числом, формой, размерами хромосом. Для описания хромосом кариотипа по предложению С.Г. Навашина их располагают в виде идиограммы - систематизированного кариотипа. В 1960 году была предложена Денверская международная классификация хромосом, где хромосомы классифицированы по величине и расположению центромеры. В кариотипе соматической клетки человека различают 22 пары аутосом и пару половых хромосом. Набор хромосом в соматических клетках называют диплоидным , а в половых клетках - гаплоидным (он равен половине набора аутосом). В идиограмме кариотипа человека хромосомы делят на 7 групп, в зависимости от их размеров и формы. 1 - 1-3 крупные метацентрические. 2 - 4-5 крупные субметацентрические. 3 - 6-12 и Х-хромосома средние метацентрические. 4 - 13-15 средние акроцентрические. 5 - 16-18 относительно малые мета-субметацентрические. 6 - 19-20 малые метацентрические. 7 - 21-22 и Y-хромосома наиболее малые акроцентрические. Согласно Парижской классификации хромосомы разделены на группы по их размерам и форме, а также линейной дифференцировке.

Все живое на планете состоит из множества клеток, поддерживающих упорядоченность своей организации за счет содержащейся в ядре генетической информации. Она сохраняется, реализуется и передается сложными высокомолекулярными соединениями - нуклеиновыми кислотами, состоящими из мономерных звеньев - нуклеотидов. Роль нуклеиновых кислот невозможно переоценить. Стабильностью их структуры определяется нормальная жизнедеятельность организма, а любые отклонения в строении неминуемо приводят к изменению клеточной организации, активности физиологических процессов и жизнеспособности клеток в целом.

Понятие нуклеотида и его свойства

Каждая или РНК собрана из более мелких мономерных соединений - нуклеотидов. Другими словами, нуклеотид - это строительный материал для нуклеиновых кислот, коферментов и многих других биологических соединений, которые крайне необходимы клетке в процессе ее жизнедеятельности.

К основным свойствам этих незаменимых веществ можно отнести:

Хранение информации о и наследуемых признаках;
. осуществление контроля над ростом и репродукцией;
. участие в метаболизме и многих других физиологических процессах, протекающих в клетке.

Говоря о нуклеотидах, нельзя не остановиться на таком важном вопросе, как их структура и состав.

Каждый нуклеотид состоит из:

Сахарного остатка;
. азотистого основания;
. фосфатной группы или остатка фосфорной кислоты.

Можно сказать, что нуклеотид - это сложное органическое соединение. В зависимости от видового состава азотистых оснований и типа пентозы в структуре нуклеотида нуклеиновые кислоты подразделяются на:

Дезоксирибонуклеиновую кислоту, или ДНК;
. рибонуклеиновую кислоту, или РНК.

Состав нуклеиновых кислот

В нуклеиновых кислотах сахар представлен пентозой. Это пятиуглеродный сахар, в ДНК его называют дезоксирибозой, в РНК - рибозой. Каждая молекула пентозы имеет пять атомов углерода, четыре из них вместе с атомом кислорода образуют пятичленное кольцо, а пятый входит в группу НО-СН2.

Положение каждого атома углерода в молекуле пентозы обозначается арабской цифрой со штрихом (1C´, 2C´, 3C´, 4C´, 5C´). Поскольку все процессы считывания с молекулы нуклеиновой кислоты имеют строгую направленность, нумерация атомов углерода и их расположение в кольце служат своего рода указателем правильного направления.

По гидроксильной группе к третьему и пятому углеродным атомам (3С´ и 5С´) присоединен остаток фосфорной кислоты. Он и определяет химическую принадлежность ДНК и РНК к группе кислот.

К первому углеродному атому (1С´) в молекуле сахара присоединено азотистое основание.

Видовой состав азотистых оснований

Нуклеотиды ДНК по азотистому основанию представлены четырьмя видами:

Аденином (А);
. гуанином (Г);
. цитозином (Ц);
. тимином (Т).

Первые два относятся к классу пуринов, два последних - пиримидинов. По молекулярной массе пуриновые всегда тяжелее пиримидиновых.

Нуклеотиды РНК по азотистому основанию представлены:

Аденином (А);
. гуанином (Г);
. цитозином (Ц);
. урацилом (У).

Урацил так же, как и тимин, является пиримидиновым основанием.

В научной литературе нередко можно встретить и другое обозначение азотистых оснований - латинскими буквами (A, T, C, G, U).

Подробнее остановимся на химической структуре пуринов и пиримидинов.

Пиримидины, а именно цитозин, тимин и урацил, в своем составе представлены двумя атомами азота и четырьмя атомами углерода, образующих шестичленное кольцо. Каждый атом имеет свой номер от 1 до 6.

Пурины (аденин и гуанин) состоят из пиримидина и имидазола или двух гетероциклов. Молекула пуриновых оснований представлена четырьмя атомами азота и пятью атомами углерода. Каждый атом пронумерован от 1 до 9.

В результате соединения азотистого основания и остатка пентозы образуется нуклеозид. Нуклеотид - это соединение нуклеозида и фосфатной группы.

Образование фосфодиэфирных связей

Важно разобраться в вопросе о том, как соединяются нуклеотиды в полипептидную цепь и образуют молекулу нуклеиновой кислоты. Происходит это за счет так называемых фосфодиэфирных связей.

Взаимодействие двух нуклеотидов дает динуклеотид. Образование нового соединения происходит путем конденсации, когда между фосфатным остатком одного мономера и гидроксигруппой пентозы другого возникает фосфодиэфирная связь.

Синтез полинуклеотида - неоднократное повторение этой реакции (несколько миллионов раз). Полинуклеотидная цепь строится посредством образования фосфодиэфирных связей между третьим и пятым углеродами сахаров (3С´ и 5С´).

Сборка полинуклеотида - сложный процесс, протекающий при участии фермента ДНК-полимеразы, которая обеспечивает рост цепи только с одного конца (3´) со свободной гидроксигруппой.

Структура молекулы ДНК

Молекула ДНК, так же как и белка, может иметь первичную, вторичную и третичную структуру.

Последовательность нуклеотидов в цепи ДНК определяет ее первичную формируется за счет водородных связей, в основе возникновения которых положен принцип комплементарности. Другими словами, при синтезе двойной действует определенная закономерность: аденин одной цепи соответствует тимину другой, гуанин - цитозину, и наоборот. Пары аденина и тимина или гуанина и цитозина образуются за счет двух в первом и трех в последнем случае водородных связей. Такое соединение нуклеотидов обеспечивает прочную связь цепей и равное расстояние между ними.

Зная последовательность нуклеотидов одной цепи ДНК, по принципу комплементарности или дополнения можно достроить вторую.

Третичная структура ДНК образована за счет сложных трехмерных связей, что делает ее молекулу более компактной и способной размещаться в малом объеме клетки. Так, например, длина ДНК кишечной палочки составляет более 1 мм, тогда как длина клетки - меньше 5 мкм.

Число нуклеотидов в ДНК, а именно их количественное соотношение, подчиняется правилу Чергаффа (число пуриновых оснований всегда равно количеству пиримидиновых). Расстояние между нуклеотидами - величина постоянная, равная 0,34 нм, как и их молекулярная масса.

Структура молекулы РНК

РНК представлена одной полинуклеотидной цепочкой, образованной через между пентозой (в данном случае рибозой) и фосфатным остатком. По длине она значительно короче ДНК. По видовому составу азотистых оснований в нуклеотиде также имеются различия. В РНК вместо пиримидинового основания тимина используется урацил. В зависимости от функций, выполняемых в организме, РНК может быть трех типов.

Рибосомальная (рРНК) - содержит обычно от 3000 до 5000 нуклеотидов. Как необходимый структурный компонент принимает участие в формировании активного центра рибосом, места осуществления одного из важнейших процессов в клетке — биосинтеза белка.
. Транспортная (тРНК) - состоит в среднем из 75 - 95 нуклеотидов, осуществляет перенос нужной аминокислоты к месту синтеза полипептида в рибосоме. Каждый вид тРНК (не менее 40) имеет свою, присущую только ему последовательность мономеров или нуклеотидов.
. Информационная (иРНК) - по нуклеотидному составу весьма разнообразна. Переносит генетическую информацию от ДНК к рибосомам, выступает в роли матрицы для синтеза белковой молекулы.

Роль нуклеотидов в организме

Нуклеотиды в клетке выполняют ряд важнейших функций:

Используются в качестве структурных блоков для нуклеиновых кислот (нуклеотиды пуринового и пиримидинового рядов);
. участвуют во многих обменных процессах в клетке;
. входят в состав АТФ - главного источника энергии в клетках;
. выступают в роли переносчиков восстановительных эквивалентов в клетках (НАД+, НАДФ+, ФАД, ФМН);
. выполняют функцию биорегуляторов;
. могут рассматриваться как вторые вестники внеклеточного регулярного синтеза (например, цАМФ или цГМФ).

Нуклеотид - это мономерная единица, образующая более сложные соединения - нуклеиновые кислоты, без которых невозможна передача генетической информации, ее хранение и воспроизведение. Свободные нуклеотиды являются главными компонентами, участвующими в сигнальных и энергетических процессах, поддерживающих нормальную жизнедеятельность клеток и организма в целом.

- это сложные мономеры, из которых собраны гетерополимерные молекулы. ДНК и РНК. Свободные нуклеотиды участвуют в сигнальных и энергетических процессах жизнедеятельности. ДНК-нуклеотиды и РНК-нуклеотиды имеют общий план строения, но различаются по строению сахара-пентозы. В ДНК-нуклеотидах используется сахар дезоксирибоза, а в РНК-нуклеотидах - рибоза.

Структура нуклеотида

В каждом нуклеотиде можно выделить 3 части:

1. Углевод - это пятичленный сахар-пентоза (рибоза или дезоксирибоза).

2. Фосфорный остаток (фосфат) - это остаток фосфорной кислоты.

3. Азотистое основание - это соединение, в котором много атомов азота. В нуклеиновых кислотах используется всего 5 видов азотистых оснований: Аденин, Тимин, Гуанин, Цитозин, Урацил. В ДНК - 4 вида: Аденин, Тимин, Гуанин, Цитозин. В РНК - тоже 4 вида: Аденин, Урацил, Гуанин, Цитозин, Легко заметить, что в РНК происходит замещение Тимина на Урацил по сравнению с ДНК.

Общая структурная формула пентозы (рибозы или дезоксирибозы), молекулы которой образуют "скелет" нуклеиновых кислот:

Если Х заменить на Н (Х = Н) - то получаются дезоксирибонуклеозиды; если Х заменить на ОН (Х = ОН) - то получаются рибонуклеозиды. Если вместо R подставить азотистое основание (пуриновое или пиримидиновое) - то получится конкретный нуклеотид.

Важно обратить внимание на те положения атомов углерода в пентозе, которые обозначены как 3" и 5". Нумерация атомов углерода начинается от атома кислорода вверху и идёт по часовой стрелке. Последним получается атом углерода (5"), который располагается за пределами пентозного кольца и образует, можно сказать, "хвостик" у пентозы. Так вот, при наращивании цепочки из нуклеотидов фермент может присоединить новый нуклеотид только к углероду 3" и ни к какому другому. Поэтому 5"-конец нуклеотидной цепочки никогда не сможет иметь продолжения, удлинняться может только 3"-конец.


Сравните нуклеотид для РНК с нуклеотидом для ДНК.

Попробуйте узнать, какой это нуклеотид, в таком представлении:

АТФ - свободный нуклеотид

цАМФ - "закольцованная" молекула АТФ

Схема строения нуклеотида


Обратите внимание на то, что активированный нуклеотид, способный наращивать цепочку ДНК или РНК, имеет "трифосфатный хвостик". Именно этим "энергонасыщенным" хвостиком он может присоединиться к уже имеющейся цепочке растущей нуклеиновой кислоты. Фосфатный хвостик сидит на 5-м атоме углерода, так что это положение углерода уже занято фосфатами и предназнено для прикрепления. К чему же его прикрепить? Только к углероду в положении 3". После прикрепления данный нуклеотид сам станет мишенью дла прикрепления следующего нуклеотида. "Принимающая сторона" предоставляет углерод в положении 3", а "прибывающая сторона" цепляется к нему фосфатным хвостиком, находящимся в положении 5". В целом цепочка растёт со стороны 3".

Наращивание нуклеотидной цепочки ДНК

Наращивание цепочки за счёт "продольных" связей между нуклеотидами может идти только в одном направлении: от 5" ⇒ к 3", т.к. новый нуклеотид можно присоединить только к 3"-концу цепочки, но не к 5"-концу.

Пары нуклеотидов, связанные "поперечными" комплементарными связями своих азотистых оснований

Участок двойной спирали ДНК

Найдите признаки антипараллельности двух цепей ДНК.

Найдите пары нуклеотидов с двойными и тройными комплементарными связями.

Подобно белкам, нуклеиновые кислоты - биополимеры, а их функция заключается в хранении, реализации и передаче генетической (наследственной) информации в живых организмах.

Существует два типа нуклеиновых кислот - дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Мономерами в нуклеиновых кислотах служат нуклеотиды. Каждый из них содержит азотистое основание, пятиуглеродный сахар (дезоксирибоза - в ДНК, рибоза - в РНК) и остаток фосфорной кислоты.

В ДНК входят четыре вида нуклеотидов, отличающихся по азотистому основанию в их составе, - аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). В молекуле РНК также имеется 4 вида нуклеотидов с одним из азотистых оснований - аденином, гуанином, цитозином и урацилом (У). Таким образом, ДНК и РНК различаются как по содержанию сахара в нуклеотидах, так и по одному из азотистых оснований (табл. 1).

Таблица 1

Компоненты нуклеотидов ДНК и РНК

Молекулы ДНК и РНК существенно различаются по своему строению и выполняемым функциям.

Молекула ДНК может включать огромное количество нуклеотидов - от нескольких тысяч до сотен миллионов (поистине гигантские молекулы ДНК удается «увидеть» с помощью электронного микроскопа). В структурном отношении она представляет собой двойную спираль из полинуклеотидных цепей (рис. 1), соединенных с помощью водородных связей между азотистыми основаниями нуклеотидов. Благодаря этому полинуклеотидные цепи прочно удерживаются одна возле другой.

При исследовании различных ДНК (у разных видов организмов) было установлено, что аденин одной цепи может связываться лишь с тимином, а гуанин - только с цитозином другой. Следовательно, порядок расположения нуклеотидов в одной цепи строго соответствует порядку их расположения в другой. Этот феномен получил название комплементарности (т. е. дополнения), а противоположные полинуклеотидные цепи называются комплементарными. Именно этим обусловлено уникальное среди всех неорганических и органических веществ свойство ДНК - способность к самовоспроизведению или удвоению (рис. 2). При этом сначала комплементарные цепи молекул ДНК расходятся (под воздействием специального фермента происходит разрушение связей между комплементарными нуклеотидами двух цепей). Затем на каждой цепи начинается синтез новой («недостающей») комплементарной ей цепи за счет свободных нуклеотидов, всегда имеющихся в большом количестве в клетке. В результате вместо одной («материнской») молекулы ДНК образуются две («дочерние») новые, идентичные по структуре и составу друг другу, а также исходной молекуле ДНК. Этот процесс всегда предшествует клеточному делению и обеспечивает передачу наследственной информации от материнской клетки дочерним и всем последующим поколениям.


Рис. 1. Двойная спираль ДНК. Две цепи обвиты одна вокруг другой. Каждая цепь (изображенная в виде ленты) состоит из чередующихся остатков сахара и фосфатных групп. Водородные связи между азотистыми основаниями (А, Т, Г и Ц) удерживают две цепи вместе

Рис. 2. Репликация ДНК. Двойная спираль «расстегивается» по слабым водородным связям, соединяющим комплементарные основания двух цепей. Каждая из старых цепей служит матрицей для образования новой: нуклеотиды с комплементарными основаниями выстраиваются против старой цепи и соединяются друг с другом

Молекулы РНК, как правило, одноцепочечные (в отличие от ДНК) и содержат значительно меньшее число нуклеотидов. Выделяют три вида РНК (табл. 2), различающиеся по величине молекул и выполняемым функциям, - информационную (иРНК), рибосомальную (рРНК) и транспортную (тРНК).

Таблица 2

Три вида РНК

Информационная РНК (и-РНК) располагается в ядре и цитоплазме клетки, имеет самую длинную полинуклеотидную цепь среди РНК и выполняет функцию переноса наследственной информации из ядра в цитоплазму клетки.

Транспортная РНК (т-РНК) также содержится в ядре и цитоплазме клет-ки, ее цепь имеет наиболее сложную структуру, а также является самой короткой (75 нуклеотидов). Т-РНК доставляет аминокислоты к рибосомам в процессе трансляции - биосинтеза белка.

Рибосомальная РНК (р-РНК) содержится в ядрышке и рибосомах клетки, имеет цепь средней длины. Все виды РНК образуются в процессе транскрипции соответствующих генов ДНК.

Нуклеотиды — это сложные биологические вещества, которые играют ключевую роль во многих биологических процессах. Они служат основой для построения ДНК и РНК и, кроме того, отвечают за синтез белков и генетическую память, будучи универсальными источниками энергии. Нуклеотиды входят в состав коферментов, принимают участие в углеводном обмене и синтезе липидов. Кроме того, нуклеотиды являются компонентами активных форм витаминов, в основном группы В (рибофлавин, ниацин). Нуклеотиды способствуют формированию естественного микробиоценоза, предоставляют необходимую энергию для регенеративных процессов в кишечнике, влияют на созревание и нормализацию функционирования гепатоцитов.

Нуклеотиды представляют собой низкомолекулярные соединения, состоящие из азотистых оснований (пурины, пиримидины), пентозного сахара (рибоза или дезоксирибоза) и 1—3 фосфатных групп.

Наиболее распространенные монофосфаты участвуют в метаболических процессах: пурины — аденозинмонофосфат (АМФ), гуанозинмонофосфат (ГМФ), пиримидины — цитидинмонофосфат (ЦМФ), уридинмонофосфат (УМФ) .

Чем же вызван интерес к проблеме содержания нуклеотидов в детском питании?

До последнего времени считалось, что все необходимые нуклеотиды синтезируются внутри организма, и их не рассматривали как незаменимые питательные вещества. Предполагалось, что нуклеотиды, поступающие с пищей, в основном оказывают «местное действие», определяя рост и развитие тонкого кишечника, обмен липидов и печеночную функцию. Однако последние исследования (материалы сессии ESPGAN, 1997) показали, что эти нуклеотиды становятся необходимыми, когда эндогенного запаса недостаточно : например, при заболеваниях, сопровождающихся энергетическим дефицитом, — тяжелых инфекциях, болезнях потребления, а также в неонатальном периоде, во время быстрого роста ребенка, при иммунодефицитных состояниях и гипоксических повреждениях. При этом общий объем эндогенного синтеза снижается, становится недостаточным для удовлетворения потребностей организма. В таких условиях поступление нуклеотидов с пищей «экономит» в организме расходы энергии для синтеза этих веществ и может оптимизировать функцию тканей. Так, врачи издавна советовали после длительных заболеваний использовать в пищу печень, молоко, мясо, бульоны, т. е. продукты, богатые нуклеотидами.

Дополнительная дотация нуклеотидов с пищей крайне важна при вскармливании младенцев. Нуклеотиды были выделены из женского молока около 30 лет назад. К настоящему времени идентифицированы 13 кислоторастворимых нуклеотидов в женском молоке. Давно известно, что состав женского молока и молока различных видов животных не идентичен. Однако многие годы было принято обращать внимание лишь на основные пищевые компоненты: белки, углеводы, липиды, минералы, витамины. Вместе с тем, нуклеотиды в женском молоке существенно отличаются, причем не только по количеству, но и по составу от нуклеотидов в коровьем молоке. Так, например, оротат, главный нуклеотид коровьего молока, содержащийся в значительных количествах даже в адаптированных молочных смесях, не присутствует в женском молоке.

Нуклеотиды являются компонентом небелковой азотной фракции грудного молока. Небелковый азот отвечает приблизительно за 25% общего азота в грудном молоке и содержит аминосахара и карнитин, которые играют особую роль в развитии новорожденных. Нуклеотидовый азот может способствовать наиболее эффективному употреблению белка у младенцев, вскармливаемых грудным молоком, получающих сравнительно меньше белка по сравнению с детьми, которых вскармливают искусственными смесями.

Было выявлено, что в женском молоке концентрация нуклеотидов превышает их содержание в сыворотке крови. Это говорит о том, что грудные железы женщины синтезируют дополнительное количество нуклеотидов, которые поступают в грудное молоко. Также имеются различия в содержании нуклеотидов по стадиям лактации. Так, наибольшее количество нуклеотидов в молоке определяется на 2-4-м месяце, и затем их содержание после 6-7-го месяца начинает постепенно снижаться.

Раннее зрелое молоко содержит преимущественно мононуклеотиды (АМФ, ЦМФ, ГМФ). Их количество в позднем зрелом молоке выше, чем в молозиве, однако меньше, чем в молоке первого месяца лактации.

Концентрация нуклеотидов в грудном молоке на порядок выше зимой, чем в аналогичные сроки кормления в летний период.

Эти данные могут свидетельствовать о том, что в клетках грудных желез происходит дополнительный синтез нуклеотидов, так как в первые месяцы жизни извне поступающие вещества поддерживают необходимый уровень метаболизма и энергетического обмена ребенка. Увеличение синтеза нуклеотидов в грудном молоке в зимний период является защитным механизмом: в это время года ребенок больше подвержен инфекции и легче развивается витаминная и минеральная недостаточность.

Как указывалось выше, состав и концентрация нуклеотидов в молоке всех видов млекопитающих различаются, но всегда их количество ниже, чем в грудном молоке. Это, по-видимому, связано с тем, что потребность в экзогенных нуклеотидах особенно высока у беззащитных детенышей .

Грудное молоко — это не только наиболее сбалансированный продукт для рационального развития ребенка, но и тонкая физиологическая система, способная меняться в зависимости от нужд ребенка. Грудное молоко еще долго будет всесторонне изучаться, причем не только количественный и качественный его состав, но и роль отдельных ингредиентов в функционировании систем растущего и формирующегося организма. Смеси для искусственного вскармливания грудных детей также будут совершенствоваться и постепенно превратятся в настоящие «заменители грудного молока». Данные о том, что нуклеотиды грудного молока имеют более широкое физиологическое значение для растущего и развивающегося организма, послужили основанием для введения их в смеси для детского питания и приближения по концентрации и составу к таковым в грудном молоке .

Следующим этапом исследований стала попытка установить влияние нуклеотидов, введенных в детские смеси, на созревание плода и развитие младенца.

Наиболее наглядными оказались данные об активации иммунной системы ребенка . Как известно, IgG регистрируется еще внутриутробно, IgM начинает синтезироваться сразу после рождения ребенка, IgA синтезируется наиболее медленно, и активный его синтез возникает к концу 2-3-го месяца жизни. Эффективность их выработки во многом определяется зрелостью иммунного ответа.

Для исследования были сформированы 3 группы: дети, получавшие только грудное молоко, только смеси с нуклеотидами и молочные смеси без нуклеотидов.

В результате было выявлено, что дети, получавшие формулы с нуклеотидными добавками, к концу 1-го месяца жизни и на 3-м месяце имели уровень синтеза иммуноглобулина М, примерно равный таковому у детей, находящихся на грудном вскармливании, но значительно более высокий, чем у детей, получавших простую смесь. Аналогичные результаты получены и при анализе уровня синтеза иммуноглобулина А .

Зрелость иммунной системы определяет эффективность вакцинопрофилактики, ведь способность к формированию иммунного ответа на прививку — это один из показателей выработки иммунитета на первом году жизни. Для примера исследовали уровень выработки антител к дифтерии у детей, находящихся на «нуклеотидной» формуле, грудном вскармливании и смесях без нуклеотидов. Уровень антител измерялся через 1 месяц после первой и после последней вакцинации. Установлено, что даже первые показатели были выше, а вторые — достоверно выше у детей, получавших смеси с нуклеотидами .

При исследовании влияния вскармливания смесью с нуклеотидами на физическое и психомоторное развитие детей отмечена тенденция к лучшей прибавке массы и более быстрому становлению моторной и психической функции .

Кроме того, есть данные, что дотация нуклеотидов способствует более быстрому созреванию нервной ткани, функций мозга и зрительного анализатора, что крайне актуально для недоношенных и морфофункционально незрелых детей, а также малышей с офтальмологическими проблемами .

Всем известны проблемы со становлением микробиоценоза у детей раннего возраста, особенно в первые месяцы. Это явления диспепсии, кишечные колики, повышенный метеоризм. Потребление «нуклеотидных» смесей позволяет быстрее нормализовать ситуацию, без необходимости коррекции пробиотиками. У детей, получавших смеси с нуклеотидами, реже отмечались дисфункция желудочно-кишечного тракта, неустойчивость стула, они легче переносили введение последующего прикорма.

Однако при применении смесей с нуклеотидами необходимо иметь в виду, что они сокращают частоту стула, поэтому детям с запорами их следует рекомендовать с осторожностью .

Особое значение эти смеси могут иметь у детей с гипотрофией, анемией, а также перенесших гипоксические нарушения в неонатальном периоде. Смеси с нуклеотидами помогают решить ряд проблем, возникающих при выхаживании недоношенных детей. В частности, речь идет о плохом аппетите и низкой прибавке массы тела в течение всего первого года жизни, кроме того, употребление смесей способствует более полноценному психомоторному развитию малышей .

Исходя из вышеизложенного применение смесей с нуклеотидными добавками для нас, врачей, представляет большой интерес. Рекомендовать эти смеси мы можем большому кругу детей, тем более что смеси не являются лечебными. Вместе с тем, мы считаем важным указать на возможность индивидуальных вкусовых реакций у детей раннего возраста, особенно при переводе ребенка с обычной смеси на нуклеотидсодержащую. Так, в некоторых случаях, даже при использовании смесей одной фирмы, мы отмечали у ребенка негативные реакции, вплоть до отказа от предлагаемой смеси. Однако все литературные источники утверждают, что нуклеотиды не только не влияют отрицательно на вкусовые качества, но и, напротив, улучшают их, не изменяя органолептических свойств смеси .

Представляем обзор смесей, содержащих нуклеотидные добавки и имеющихся на нашем рынке . Это сывороточные смеси фирмы «Фризленд Ньютришн» (Голландия) «Фрисолак», «Фрисомел», в которых содержатся 4 нуклеотида, идентичных нуклеотидам женского молока; сывороточная смесь «Мамекс» (Intern Nutrition, Дания), НАН («Нестле», Швейцария), «Энфамил» («Мид Джонсон», США), смесь «Симилак формула плюс» («Эббот Лабораториз», Испания/США). Количество и состав нуклеотидов в этих смесях разные, что определяется фирмой-производителем.

Все фирмы-изготовители стараются подобрать соотношение и состав нуклеотидов, приблизив его, насколько возможно технически и биохимически, к аналогичным показателям грудного молока. Совершенно ясно, что механический подход не является физиологическим. Безусловно, введение нуклеотидов в смеси для детского питания — это революционный шаг в производстве заменителей грудного молока, способствующий максимальному приближению к составу женского грудного молока. Однако никакая смесь пока не может считаться физиологически полностью идентичной этому единственному, универсальному и необходимому ребенку продукту.

Литература
  1. Gyorgy. P. Biochemical aspects. Am.Y.Clin. Nutr. 24(8), 970-975.
  2. Europan society for Pediatric Gastroenterology and Nutrition (ESPGAN). Committee on Nutrition: Guidelines on infant nutrition I. Recommendations on the composition of an adapted formula. Asta Paediatr Scand 1977; Suppl 262: 1-42.
  3. James L. Leach, Jeffreu H. Baxter, Bruce E. Molitor, Mary B. Ramstac, Marc L\ Masor. Все потенциально имеющиеся нуклеотиды материнского молока на стадии лактации//Американский журнал клинического питания. - Июнь 1995. - Т. 61. - №6. - С. 1224-30.
  4. Carver J. D., Pimental B., Cox WI, Barmess L. A. Dietary nucleotidi effects upon immune function in infаnts. Pediatrics 1991; 88; 359-363.
  5. Uauy. R., Stringel G., Thomas R. and Quan R . (1990) Effect of dietari nucleosides on growth and maturation of the developing gut in the rat. J. Pediatr. Gastroenterol. Nutr. 10, 497-503.
  6. Brunser O., Espinosa J., Araya М., Gruchet S. and Gil А. (1994) Effect of dietari nucleotide suppementation on diarrhoeal disease in infants. Asta Paediatr. 883. 188-191.
  7. Кешишян Е. С., Бердникова Е. К.//Смеси с нуклеотидными добавками для вскармливания детей первого года жизни//Детское питание XXI века. - С. 24.
  8. Дэвид. Новые технологии улучшения продуктов детского питания//Педиатрия. - 1997. - №1. - С. 61-62.
  9. Кешишян Е. С., Бердникова Е. К. Смеси с нуклеотидными добавками для вскармливания грудных детей. Ожидаемый эффект//Педиатрия. Consilium medicum. - Приложение №2. - 2002. - С. 27-30.

Е. С. Кешишян, доктор медицинских наук, профессор
Е. К. Бердникова
МНИИ педиатрии и детской хирургии Минздрава РФ, Москва

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса