Подпишись и читай
самые интересные
статьи первым!

Какие характеристики применимы к альфа излучению. Альфа излучение. Влияние на живые организмы

Радиация стала изучаться относительно недавно. Одним из ученых, который внес в сферу изучения этого явления весомый вклад, стал Резерфорд. Он был автором теперь уже классического опыта на основе помещения радиоактивного излучателя в магнитное поле. Использованный в экспериментах радиоактивный пучок разделился на три составляющих. Те лучи, которые испытали минимальное отклонение, получили название альфа-лучи. С тех пор облучение из этой гаммы стало использоваться во благо. Но существует ряд случаев, когда подобное излучение наносило вред живому.

Основные источники альфа-излучения

Усовершенствовав методику изучения радиационного влияния, англичанин Резерфорд выяснил, что отклонение альфа-излучения фиксируется также в электрическом поле. Было замечено, что лучи больше тяготеют к отрицательному полюсу.

Так было установлено, что альфа-облучение относится к категории положительных частиц. Их параметры идентичны показателям гелиевых ядер. У обычного атома этого элемента в составе содержится всего пара электронов. В научной среде такие лучи носят название α-излучение.

Разобравшись с тем, ученые начали искать его первоисточники. Схематически их можно разделить на две равноценные категории:

  • естественные,
  • искусственные.

Всего существует четыре основных источника излучения разного происхождения:

  • Испускание ядер гелия. Происходит ядерный распад тяжелых элементов вроде радия, либо тория.
  • Межзвездный газ. Возникает из-за ускорения гелиевых ядер из космического пространства, которые стремятся преодолеть земное тяготение.
  • Научные эксперименты. Опыты, которые проводятся специалистами в условиях радиоизотопных лабораторий, должны включать в себя ускорители заряженных частиц. Все вместе это генерирует нужное облучение.
  • Промышленность. Подразумевает под собой различные объекты урановой индустрии и ядерные реакторы.

Особенности α-лучей в разных средах

Кроме необходимости знать, что такое альфа-излучение для защиты себя от его влияния, нужно разбираться в его особенностях.

Стартовая скорость таких частиц варьируется в рамках 14-20 тысяч км/с. По сравнению с бета-частицами они считаются более массивными. Разница составляет более 7300 раз. Из-за этого ионизирующая способность лучей считается высокой.

Среднестатистический показатель создания пара ионов тут составляет 200000 раз. Для этого должны быть соблюдены основные условия: свободное движение в воздухе, температура окружающей среды в 15 градусов и обычное атмосферное давление.

Но срок «жизнеспособности» этих частиц довольно ограничен. Вызвано это тем, что при ионизации требуются многочисленные энергетические затраты. После того как частицы начинают последовательно тормозить, их способность к ионизации значительно возрастает.

Свободный пробег частиц из альфа-гаммы по воздуху составляет не более 11 см при благоприятной среде. А вот жидкая и твердая среды не благоприятны для проникновения лучей. Здесь они не могут продвинуться даже на миллиметр.

Сферы использования альфа-излучения

Многие люди напуганы мифами касательно поражающей способности альфа-излучения, путая его с опасными рентгенологическими лучами.

После тщательного изучения особенностей альфа-частиц, ученые разработали отдельное направление терапии. Оно включает в себя дозированное воздействие на организм человека для достижения узкого круга результатов во благо улучшения здоровья.

Главными «действующими лицами» в подобных процедурах выступают изотопы вроде радона и торона. Они имеют строго ограниченный срок жизнедеятельности, из-за чего выводятся из организма естественным путем оперативно.

С их помощью медики проводят следующий спектр процедур:

  • ванны с привлечением радона;
  • употребление радоновой воды вовнутрь;
  • аппликации и орошения на основе радона;
  • ингаляции с радоновым компонентом.

Согласно некоторым исследованиям, альфа-лучи считается более эффективным и безопасным решением для больных, нежели более разрекламированное бета-облучение. Объясняется это тем, что альфа-частицы могут направляться сфокусировано на строго определенный участок. Это гарантирует возможность уничтожить опасные болезнетворные клетки точечно.

Этот метод был взят на вооружение ведущими мировыми онкологами при лечении раковых опухолей. Он пользуется спросом и из-за того, что позволяет снизить число нужных для полного курса лечения процедур по сравнению с бета-облучением.

Главными действиями, которыми обладает альфа-терапия, называют:

  • противовоспалительное,
  • обезболивающее,
  • успокаивающее.

Благодаря всему вышеперечисленному терапию стали задействовать при лечении заболеваний из области гинекологии и сердечно-сосудистых проблем. Передовые технологии позволяют прибегать к помощи альфа-частиц при лечении опорно-двигательного аппарата.

Но перед тем как включить представленную терапию в перечень медицинских процедур, прошедших одобрение, ученые годами исследовали влияние альфа-лучей. В ходе экспериментов они научились вычислять предельно допустимые дозировки для человека, оптимальные механизмы воздействия. Также исследователи создали целый ряд методов защиты от «прирученной» радиации.

Как защитить себя от альфа-излучения?

Защита от альфа-излучения базируется на особенностях проникающей способности лучей. Из-за своей короткой длины и ионизирующих возможностей альфа-лучи способны проникнуть в организм человека только на небольшую глубину. На практике это означает, что частицы лишь повреждают поверхность кожи. Но это правило распространяется только на внешнее прямое попадание лучей.

Если α-облучение осуществлялось с пищей или посредством ранее поврежденного покрова, то негативное воздействия лучей увеличивается. В таком случае у пациента фиксируют тяжелое отравление, инициатором которого стали массивные частицы. Они образовывают окислители, свободный кислород и водород.

Если производить облучение высокими дозами бесконтрольно и на регулярной основе, то лучи могут негативно сказаться на самочувствии. Опасные частицы могут накапливаться в гипофизе или коре надпочечников. После они начинают работать над уменьшением адаптационных свойств организма.

Но если сравнивать защиту от альфа, бета, между собой, то первый вариант считается самым простым. Вызвано это доказанной относительной безобидностью такого потока частиц. Из-за этого людям не требуется защищаться от его влияния особенными средствами. Достаточно просто отойти на 20 сантиметров от объекта излучения, чтобы оказаться в зоне безопасности.

Если невозможно отойти на рекомендуемое расстояние, то в качестве блокиратора выступает:

  • обычная бумага;
  • слой ткани;
  • тонкая пластина алюминия.

Даже обычная плотная одежда может стать полноценным барьером, помогающим защититься от облучения.

Гораздо сложнее дела обстоят с внутренним облучением. Чтобы не допустить столь серьезного расклада, стоит сработать на опережение. Речь идет о полном недопущении попадания радионуклидов внутрь организма. На помощь могут прийти средства для индивидуальной защиты:

  • спецодежда, включая обувь, на основе ряда особых материалов;
  • щитки из оргстекла для защиты органов зрения;
  • дерматологические кремы, которые защищают чувствительную кожу.

Отдельно доктора составили список продуктов, которые позволяют значительно ускорить вывод опасных радионуклидов из человеческого организма.

В перечень попали продукты питания, которые содержат в своем составе витамины группы В и С. Если доза облучения была незначительной, то справиться с ней могут даже перепелиные яйца. Объясняется это тем, что яйца перепелок содержат в себе ряд полезным аминокислот и вещества, имеющие доказанное радиозащитное действие.

В растительном мире обратить внимание следует на топинамбур. Он практически единственный овощ, который не накапливает радиоактивные элементы.

Еще одним интересным фактом об альфа-излучении выступает невозможность диагностировать его в пространстве обычными дозиметрами. Вызвано это специфичной маленькой способность к проникновению.

Выручить в спорной ситуации сможет только счетчик Гейгера. Он оповестит оператора о возможной угрозе, что гарантирует возможность принять оперативные меры по предотвращению бесконтрольного облучения.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Мы, люди, живём в мире, который можно назвать радиоактивным. Места, где существует абсолютное отсутствие радиоактивности, в природе, среде обитания животных, людей нет. Радиоактивность - это природное образование, космические лучи, рассеянные в окружающей среде радиоактивные нуклиды, то есть вещества, которые создают радиоактивный фон, в котором мы живём. За время эволюции, всё живое приспособилось к этому уровню фона. Также нужно ещё учитывать, что уровень радиоактивности на Земле всё время понижается, каждые 10-15 тыс. лет уровень радиоактивности уменьшается примерно в два раза. В целом только крупные аварии на какой-то территории связанные, как правило, с атомными станциями нарушают этот средний уровень. И самым опасным для человека стечением обстоятельств считается, когда внутрь организма человека попадают радионуклиды. Причём, при внутреннем облучении наиболее опасное воздействие производят α-частицы. Принято считать, что эта опасность α-облучения вызвана их большой массой по сравнению с электронами и повышенной ионизирующей способностью из-за двойного заряда.

Актуальность работы заключается в том, что в общественном сознании практически закреплено представление об абсолютной опасности любого радиоактивного облучения, и поэтому представляется необходимым рассмотрение физической природы патологического воздействия радиоактивности на живые организмы и оценка уровней риска и опасности.

Цель работы: сделать попытку оценить тормозное электромагнитное излучение альфа-частиц как фактора патологического воздействия на живой организм при внутреннем облучении.

Задачи:

1.Ознакомиться с природой радиоактивности и методами ее исследования;

2.Исследовать возможность использования школьного физического оборудования;

3.Разработать эксперимент и исследовать его результат.

Гипотеза : одним из компонентов патологического действия на организм при внутреннем облучении является электромагнитное излучение, вызванное торможением (движением с отрицательным ускорением) на треке, и приводящее к нарушениям молекул ДНК за счёт большой плотности мощности излучения в группе клеток рядом с треком с последующим развитием онкологического заболевания.

Объект исследования: α-частица при её торможении в биологических тканях при внутреннем облучении.

Предмет исследования: компонент потери энергии α-частицы на электромагнитное излучение.

Часть 1. О природе радиации.

    1. Рис. 1. А.Беккерели

      ткрытие радиоактивности и его биологического действия

1896 г. Французский физик А.Беккерель, изучая явление люминесценции солей урана, установил, что урановая соль испускает лучи неизвестного типа, которые проходят сквозь бумагу, дерево, тонкие металлические пластины, ионизируют воздух. В феврале 1896 г. Беккерели не удалось провести очередной опыт из-за облачной погоды. Беккерель убрал пластинку в ящик стола, положив на неё сверху медный крест, покрытый солью урана. Проявив на всякий случай пластинку два дня спустя, он обнаружил на ней почернение в форме отчётливой тени крестика. Это означало, что соли урана самопроизвольно, без каких-либо внешних явлений, создают какое-то излучение. Начались интенсивные исследования.

1898 г. Мария Склодовская-Кюри, исследуя урановые руды, обнаружила новые химические элементы: полоний, радий. Оказалось, что все химические элементы, начиная с порядкового номера 83, обладают радиоактивностью. Явление самопроизвольного превращения неустойчивых изотопов в устойчивые, сопровождающееся испусканием частиц и излучением энергии, называется естественной радиоактивностью.

    1. Формы радиоактивности

1898 г. Подвергая радиоактивное излучение действию магнитного поля, Э.Резерфорд выделил два вида лучей: α-лучи - тяжёлые положительно заряженные частицы (ядра атомов гелия) и β-лучи - лёгкие отрицательно заряженные частицы (тождественны электронам).Два года спустя П. Виллард открыл гамма-лучи. Гамма-лучи - это электромагнитные волны с длиной волны от Гамма-лучи не отклоняются электрическими и магнитными полями.

Рис. 3. Альфа-излучение

Рис. 2. Влияние магнитного поля на траекторию движения частиц

Рис. 4. Бета-излучение

После установления Резерфортом структуры атома стало ястно, что радиоактивность представляет собой ядерный процесс.1902 г. Э.Резерфорд и Ф.Содди доказали, что в результате радиоактивного распада происходит превращение атомов одного химического элемента в атомы другого химического элемента, сопровождаемое испусканием различных частиц.

Альфа-частицы, бета-частицы, выброшенные из ядра, обладают значительной кинетической энергией и, воздействуя на вещество, с одной стороны производят его ионизацию, а с другой проникают на определенную глубину. Взаимодействуя с веществом, они теряют эту энергию, в основном в результате упругих взаимодействий с ядрами атомов или электронами, отдавая им всю или часть своей энергии, вызывая ионизацию или возбуждение атомов (т.е. перевод электрона с более близкой на более удаленную от ядра орбиту). Ионизация и проникновение на определенную глубину имеют принципиальное значение для оценки воздействия ионизирующего излучения на биологическую ткань различных видов излучений. Зная свойства различных видов излучений проникать через разные материалы, человек может использовать их для своей защиты.

Часть 2. Альфа - излучение и его характеристики

2.1. Патогенность и опасность α-излучения

Альфа-излучение — это поток ядер атомов гелия. Возникает в результате распада атомов тяжелых элементов, таких как уран, радий и торий. Вид радиоактивного распада ядра, в результате которого происходит испускание ядра гелия 4 He - альфа-частицы. При этом массовое число ядра уменьшается на 4, а атомный номер - на 2.

В общем виде формула альфа - распада выглядит следующем образом:

Пример альфа - распада для изотопа 238 U:

Рис.5. Альфа распад урана 238

Альфа-частицы, образованные при распаде ядра, имеют начальную кинетическую энергию в диапазоне 1,8—15 МэВ. При движении альфа-частицы в веществе она создаёт сильную ионизацию окружающих атомов, в результате очень быстро теряет энергию. Энергии альфа-частиц, возникающей в результате радиоактивного распада, не хватает даже для преодоления мёртвого слоя кожи, поэтому радиационный риск при внешнем облучении такими альфа-частицами отсутствует. Внешнее альфа-облучение опасно для здоровья только в случае высокоэнергичных альфа-частиц (с энергией выше десятков МэВ), источником которых является ускоритель. Однако проникновение альфа-активных радионуклидов внутри тела, когда облучению подвергаются непосредственно живые ткани организма, весьма опасно для здоровья, поскольку большая плотность ионизации вдоль трека частицы сильно повреждает биомолекулы. Считается, что при равном энерговыделении (поглощённой дозе) эквивалентная доза, набранная при внутреннем облучении альфа-частицами с энергиями, характерными для радиоактивного распада, в 20 раз выше, чем при облучении гамма- и рентгеновскими квантами. Таким образом, опасность для человека при внешнем облучении могут представлять α-частицы с энергиями 10 МэВ и выше, достаточными для преодоления омертвевшего рогового слоя кожного покрова. Гораздо большую опасность для человека представляют α-частицы, возникающие при альфа-распаде радионуклидов, попавших внутрь организма (в частности, через дыхательные пути или пищеварительный тракт). Достаточно микроскопического количества α-радиоактивного вещества, чтобы вызвать у пострадавшего острую лучевую болезнь, зачастую с летальным исходом.

Будучи довольно тяжелыми и положительно заряженными, альфа-частицы от радиоактивного распада имеют очень короткий пробег в веществе и при движении в среде быстро теряют энергию на небольшом расстоянии от источника. Это приводит к тому, что вся энергия излучения высвобождается в малом объеме вещества, что увеличивает шансы повреждения клеток при попадании источника излучения внутрь организма. Однако внешнее излучение от радиоактивных источников безвредно, поскольку альфа-частицы могут эффективно задерживаться несколькими сантиметрами воздуха или десятками микрометров плотного вещества — например, листом бумаги и даже роговым омертвевшим слоем эпидермиса, не достигая живых клеток. Даже прикосновение к источнику чистого альфа-излучения не опасно, хотя следует помнить, что многие источники альфа-излучения излучают также гораздо более проникающие типы излучения (бета-частицы, гамма-кванты, иногда нейтроны). Однако попадание альфа-источника внутрь организма приводит к значительному облучению.

Рис. 6. Проникающая способность альфа, бета частиц и гамма-квантов.

2.2. Расчет характеристик α-частицы

Существование электромагнитных волн было главным предсказанием. Дж.К.Максвелла (1876 г.), эта теория изложена в разделе школьного курса физики - электродинамика. «Электродинамика»- это наука об электромагнитных волнах, о природе их возникновения, распространении в разных средах, взаимодействии с различными веществами, структурами.

И в этой науке есть одно из фундаментальных утверждений, что любая имеющая электрический заряд частица, движущаяся с ускорением, является источником электромагнитного излучения.

Именно благодаря этому в рентгеновских установках рождаются рентгеновские волны при быстрой остановке потока электронов, которые после ускорения в приборе тормозятся при столкновении с анодом рентгеновской трубки.

Нечто аналогическое происходит за очень короткое время и с α-частицами, если их источник - ядра радиоактивных атомов, расположенных в среде. Имея при вылете из ядра большую скорость и пробежав всего от 5 до 40 микрон - α-частица останавливается. При этом, испытывая громаднейшее замедление и имея двойной заряд, не могут не создавать электромагнитный импульс.

Я, пользуясь обычными школьными законами механики и законом сохранения энергии, подсчитал начальную скорость α-частиц, величину отрицательного ускорения, время движения α-частицы до остановки, силу сопротивления её движения и развиваемую ей мощность.

Понятно, что энергия α-частицы идёт на разрушение клеток организма, ионизацию атомов, в одном случае больше, при вылете из других радиоактивных ядер меньше, но энергия излучения, созданная за короткое время пролета примерно от 5 до 40 микрон, не может превышать энергию α-частиц, которую они имеют при вылете.

При расчетах я использовал в качестве исходных известных характеристик, только энергию α-частиц (это её кинетическая энергия) и среднюю длину пробега в биологических тканях организма (L= 5 - 40 мкм). Массу α-частицы и её состав, я нашёл в справочнике.

Энергия их α-частиц равна 4-10 МэВ. Вот для таких α-частиц я и проводил расчёты.

Масса α-частицы равна 4 а.е.м.; 1 а.е.м.=1.660·10 -27 кг;

m = 4·1,660·10 -27 = 6,64·10 -27 кг - масса α-частицы.

Длина трека α-частицы.

q = 2 ·1,6·= 3,2 · - заряд

E к = 7МэВ = 7·10 6 ·1,6·10 -19 = 11,2·10 -13 Дж - кинетическая энергия α-частицы.

F = ma = 6.64·10 -27 ·8,4·10 18 =5,5 ·10 -8 Н- сила сопротивления α-частицы.

Таб.1 характеристика α-частицы.

.3.Мощность α-излучения и нормы электромагнитной безопасности

Данные из справочника:

1.Глубина δ проникновения электромагнитных волн частотой 10 ГГц в биологических тканях с большим содержанием воды (вода - поглотитель электромагнитных волн) составляет 3,43 мм (343 мкм). При проникновении электромагнитной волны на глубину δ её плотность мощности уменьшается в e=2,71 раза.

2.Из норм безопасности при времени воздействия менее 0,2 часа плотность мощности (критическая) не должна превышать

В (1) указаны глубины проникновения, ослабления электромагнитной волны для частоты 10 ГГц. В нашем случае одиночный импульс электромагнитной волны можно интерпретировать как положительную часть одного периода, т.е. наиболее близким значением частоты будет 230 ГГц.

Для биологической ткани в максимальной чистоте указанной в справочнике равной 10 ГГц. По нашим расчётам единичный импульс электромагнитной волны может быть представленным как короткий импульс частоты 230 ГГц. Из справочника можно сделать вывод, что с повышением частоты электромагнитных волн толщина δ уменьшается. Оценим толщину δ для нашего случая. Частота 230 ГГц превышает приведённую в справочнике 10 ГГц в 23 раза. Предполагая, что соотношению частот в 23 раза будет постоянным и для предшествующего участка диапазона (10 ГГц будет в 23 раза больше частоты 433 МГц) - для которого (т.е. в 10 раз). Тогда и для частоты 230 ГГц можно принять δ = 34 мкм.

Принимая, что, проходя из центра сферы, излучение через поверхности мысленно построенных сфер с общим центром и с расстоянием между ними, равны δ, то пройдя через n таких поверхностей начальная интенсивность (мощность) электромагнитной волны будет уменьшена в раз. Чтобы Расчёты оказались близкими к истине возьмём n при количестве слоёв равных 8; тогда

Так как; Начальную энергию электромагнитных волн можно оценить как 0,01; т.к механическая энергия альфа-частицы в основном тратится на образовании трека ионизированных частиц. Поэтому можно принять.

Будут убиты импульсом волны. Это подтверждают количественные оценки.

Т.к. расчётная плотность мощности излучения, исходящего из центра сферы и проходящего через неё при радиусе сферы (8δ =272 мкм) с площадью 4,65 , будет сопоставимой с критической плотности мощностью излучения требуемой нормы СанПиНа, можно утверждать, что внутри этой сферы, в её объёме все клетки погибнут.

Т.о. наши оценки приводят к результату, что все биологические клетки в объёме сферы, к поверхности которой проходит излучение из центра сферы от трека α-частицы погибнут, т.е. они будут находится в пространстве, объёме, через который проходит электромагнитная волна с плотностью мощности излучения, превышающей критическую плотность излучения, определённую нормами СанПиНа. Эти погибшие клетки (точнее их останки) за счёт механизмов регенерации организма практически без каких теперь либо последствий будут удалены из организма.

Самым опасным из последствий, такого электромагнитного шока для клеток будет то, что в некотором шаровом слое клеток, окружающих опасную сферу, будут такие полуубитые клетки, правильное функционирование некоторых наверняка будет нарушено тем электромагнитным импульсом, который «сломал» (разорвал, нарушил) структура ДНК, которая ответственна за «правильную» регенерацию данной клетки.

Часть 3. Разработка и проведение экспериментов

3.1. Измерение радиоактивного фона на территории МБОУ СОШ №11

Цель: измерить радиоактивный фон на территории МБОУ СОШ №11.

Гипотеза: осадки и ветер переносят разные виды частиц (в нашем случае нас интересуют именно радиоактивные частицы).

Оборудование: дозиметр.

Цифровой монитор излучения

Для экспериментов я использовал датчик ионизирующего излучения (дозиметр).Датчик ионизирующего излучения (дозиметр) предназначен для автоматического подсчёта числа попавших в него ионизирующих частиц. Прибор может использоваться для измерения уровня альфа-, бета- и гамма- излучения. Так как прибор оснащен собственным экраном, то его можно использовать независимо от компьютера и других устройств фиксации данных в полевых условиях для определения уровня радиации.

Рис. 7 Датчик ионизирующего излучения (дозиметр)

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ 1. Диапазоны измерений: . Х1: 0 - 0,5 мР/ч; 0 - 500 циклов/мин (СРМ); . Х2: 0 - 5 мР/ч; 0 - 5000 циклов/мин (СРМ); . Х3: 0 - 50 мР/ч; 0 - 50000 циклов/мин (СРМ). 2. Чувствительность: 1000 циклов/мин/мР/Ч относительно цезия-137. 3. Точность: . при визуальной калибровке: ± 20 % от полной шкалы; . при инструментальной калибровке: ± 10 % от полной шкалы. 4. Калибровка: применяется Цезий-137. 5. Диапазон рабочих температур: 0 - 50 °С. 6. Электропитание: . элемент питания (9В); . средний срок cлужбы элемента питания: 2000 часов при нормальном уровне фоновой радиации.

Ход работы: Для этого мы, в разные месяцы измеряли радиационный фон нашей школы. В зимний период направление ветра направленно в южную сторону (сторона AB).

Рис. 8 План МБОУ СОШ №11

Таб 2.Радиоактивный фон территории МБОУ СОШ №11.

Результаты

В южной стороне измеренный радиоактивный фон больше, чем в северной стороне, а это значит, ветер и осадки и правда переносят разные виды частиц.

Также я провел измерения у канализации (это точки F и K) и показатели дозиметра, там немного выше, а это доказывает то, что именно вода является переносчиком радионуклидов.

3.2.Исследование зависимости поглощенной дозы от расстояния до геометрического центра препарата при плоской геометрии.

Цель работы: исследование зависимости поглощенной дозы от расстояния до геометрического центра препарата при плоской геометрии.

Оборудование: линейка, дозиметр, гидроксид калия.

Ход работы: измерить радиоактивный уровень, отдаляя препарат от дозиметра на каждый сантиметр.

Рис. 9 Результаты зависимости поглощенной дозы от расстояния до геометрического центра препарата при плоской геометрии.

Эксперимент показывает, что при плоской геометрии радиоактивного препарата зависимость поглощённой дозы от расстояния до центра препарата отличается от квадратичной в случае точечного препарата. При плоской геометрии эта зависимость от расстояния более слабая.

Заключение.

Оценки и расчёты показывают, что плотность мощности излучения в области тканей, ближайшего окружения трека превышают в десятки раз допустимые нормы электромагнитной безопасности, что приводит к полной гибели клеток этой области. Но существующий механизм регенерации восстановит убитые клетки и сохранит все функции этих клеток. Главная опасность для организма - наличие шарового слоя клеток, окружающих эту центральную область. Клетки шарового слоя остаются живыми, но мощный электромагнитный импульс, может повлиять на молекулы их ДНК, что может привести к их неправильному развитию и образования их реплик с патологией онкологического характера.

Литература

1. Ш.А.Горбушкин - Азбука физики

2. Г.Д.Луппов - Опорные конспекты и тестовые задания («Учебная литература», 1996);

3.П.В.Глинская - Для поступающих в вузы («Братья Гринины», 1995);

Химическая энциклопедия (Советская Энциклопедия, 1985);

4.Гусев Н. Г., Климанов В. А., Машкович В. П., Суворов А. П. - Защита от ионизирующих излучений;

5.Абрамов А. И., Казанский Ю. А., Матусевич Е. С. Основы экспериментальных методов ядерной физики (3-е изд., перераб. и доп. М., Энергоатомиздат, 1985);

6.Нормы радиационной безопасности (НРБ-99/2009) (Минздрав России, 2009);

7.Моисеев А. А., Иванов В. И. Справочник по дозиметрии и радиационной гигиене (2-е изд., перераб. и доп. М., Атомиздат, 1974);

8.Физическая энциклопедия (Советская энциклопедия, 1994. Т. 4. Пойнтинга-Робертсона);

9.Мухин К. Н. - Экспериментальная ядерная физика (Кн. 1. Физика атомного ядра. Ч. I. Свойства нуклонов, ядер и радиоактивных излучений. — М.: Энергоатомиздат, 1993);

10.Биофизические характеристики тканей человека. Справочник/Березовский В.А. и др.; Киев: Наукова думка, 1990.-224 с.

Альфа частица представляет собой положительно заряженную частицу в ядерной физике, которая образуется при распаде ядер и имеет два протона и два нейтрона. Поток таких частиц принято называть альфа излучением.

Впервые о данном явлении упомянул ученый Э. Резерфорд еще вначале XX в., который в числе первых предположил наличие бета, гамма и, конечно же, альфа частиц, провел много опытов превращения ядер азота в ядра кислорода. Среди нескольких видов излучений, альфа излучение наиболее безопасное для живых существ.

Основные характеристики

Альфа частица выглядит как симметричный объект в виде сферы, при радиусе приблизительно 2·10 -13 см. Что касается ее массы, то это — 6.6·10 -27 кг. Скорость ее передвижения довольно низкая, при выхождении из ядра, она способна перемещаться еще некоторое расстояние, затем останавливается.

При близком контакте с кожей человека она способна проникнуть на расстояние всего нескольких микрон. Это объясняется процессом ионизации, при котором поток отдает большую часть своей первоначальной энергии.

Взаимодействие альфа излучения с различными веществами

Частицы, образующие альфа излучение, являются довольно тяжелыми, вследствие чего у них небольшая скорость. Также, стоит отметить, что большое количество своей энергии они передают поглотителю при малой скорости, при этом образуется большое количество пар ионов. Для примера рассматривается частица со скоростью 20 мм/с которая способна образовать в воздухе приблизительно сто тысяч пар ионов.

Влияние на живые организмы

Внешняя проникающая способность данного излучения небольшая, может вполне задерживаться слоем бумаги. При малом внешнем воздействии возможно развитие злокачественных образований и нарушение правильного обмена веществ. Однако, при таком виде подвержены поражению слизистые участки тела и глаза, которые не поддаются дальнейшему излечению.

В процессе большого количества исследований, ученые пришли к выводу, что альфа частицы при попадании в живой организм с помощью пищи, воды и воздуха могут принести поистине катастрофические разрушения, поскольку они полностью сжигают живой организм изнутри. Особенно опасными признаны альфа частицы плутония 239, которые активно накапливаются в почках, печени, легких, селезенке и приводят к тяжелой форме лучевой болезни, затем и к скорому летальному исходу.


Научно-популярный фильм о Эрнесте Резерфорде

Не нужно пугаться этого слова: оно обозначает попросту радиоактивные изотопы. Иногда в речи можно услышать слова «радионуклеид», или еще менее литературный вариант - «радионуклеотид». Правильный термин - именно радионуклид. Но что такое радиоактивный распад? Каковы свойства разных видов излучения и чем они отличаются? Обо всем - по порядку.

Определения в радиологии

С тех времен, когда произошел взрыв первой атомной бомбы, многие понятия из радиологии претерпели изменения. Вместо фразы «атомный котел» принято говорить «атомный реактор». Вместо словосочетания «радиоактивные лучи» пользуются выражением «ионизирующие излучения». Словосочетание «радиоактивный изотоп» заменено на «радионуклид».

Долгоживущие и короткоживущие радионуклиды

Альфа-, бета- и гамма-излучения сопровождают процесс распада атомного ядра. Что такое Ядра радионуклидов не являются стабильными - этим они и отличаются от других устойчивых изотопов. В определенный момент запускается процесс радиоактивного распада. Радионуклиды при этом превращаются в другие изотопы, в процессе чего испускаются альфа-, бета- и гамма-лучи. Радионуклиды имеют разный уровень нестабильности - некоторые из них распадаются в течение сотен, миллионов и даже миллиардов лет. К примеру, все изотопы урана, которые встречаются в природе, являются долгоживущими. Есть и такие радионуклиды, которые распадаются в течение секунд, дней, месяцев. Они зовутся короткоживущими.

Выброс альфа-, бета- и гамма-частиц сопровождает не любой распад. Но на самом деле радиоактивный распад сопровождается только выбросом альфа- или бета-частиц. В некоторых случаях этот процесс происходит в сопровождении гамма-лучей. Чистое гамма-излучение в природе не встречается. Чем больше скорость распада радионуклида, тем выше его уровень радиоактивности. Некоторые считают, что в природе существует альфа-, бета-, гамма- и дельта-распад. Это неверно. Дельта-распада не существует.

Единицы измерения радиоактивности

Однако в чем измеряется эта величина? Измерение радиоактивности позволяет выразить интенсивность распада в цифрах. Единица измерения активности радионуклида - беккерель. 1 беккерель (Бк) означает, что 1 распад происходит в 1 сек. Когда-то для этих измерений использовалась гораздо более крупная единица измерения - кюри (Ки): 1 кюри = 37 млрд беккерелей.

Естественно, сопоставлять необходимо одинаковые массы вещества, например 1 мг урана и 1 мг тория. Активность взятой единицы массы радионуклида называется удельной активностью. Чем больше период полураспада, тем меньше удельная радиоактивность.

Какие радионуклиды представляют собой большую опасность?

Свойства гамма-лучей

Этот вид излучения имеет ту же природу, что и ультрафиолетовое излучение, инфракрасные лучи или радиоволны. Гамма-лучи представляют собой фотонное излучение. Однако с чрезвычайно высокой скоростью фотонов. Этот тип излучения очень быстро проникает сквозь материалы. Чтобы задержать его, обычно используют свинец и бетон. Гамма-лучи способны преодолевать тысячи километров.

Миф об опасности

Сравнивая альфа-, гамма- и бета-излучение, люди обычно считают гамма-лучи наиболее опасными. Ведь они образуются при ядерных взрывах, преодолевают сотни километров и вызывают лучевую болезнь. Все это верно, однако не имеет непосредственного отношения к опасности лучей. Так как в этом случае говорят именно об их проникающей способности. Конечно, альфа-, бета- и гамма-лучи различаются в этом отношении. Однако опасность оценивается не проникающей способностью, а поглощенной дозой. Этот показатель высчитывается в джоулях на килограмм (Дж/кг).

Таким образом, измеряется дробью. В ее числителе находится не количество альфа-, гамма- и бета-частиц, а именно энергия. К может быть жестким и мягким. Последнее обладает меньшей энергией. Продолжая аналогию с оружием, можно сказать: значение имеет не только калибр пули, важно и то, из чего производится выстрел - из рогатки или из дробовика.

Слово радиация, в переводе с английского "radiation" означает излучение и применяется не только в отношении радиоактивности, но целого ряда других физических явлений, например: солнечная радиация, тепловая радиация и др. Поэтому в отношении радиоактивности следует применять принятое МКРЗ (Международной комиссией по радиационной защите) и Нормами радиационной безопасности понятие "ионизирующее излучение".

ионизирующее излучение ( ИОНИЗИРУЮЩАЯ РАДИАЦИЯ )?

Ионизирующее излучение - излучение (электромагнитное, корпускулярное), которое при взаимодействии с веществом непосредственно или косвенно вызывает ионизацию и возбуждение его атомов и молекул. Энергия ионизирующего излучения достаточно велика, чтобы при взаимодействии с веществом, создать пару ионов разных знаков, т.е. ионизировать ту среду в которую попали эти частицы или гамма кванты.

Ионизирующее излучение состоит из заряженных и незаряженных частиц, к которым относятся также фотоны.

Что такое радиоактивность?

Радиоактивность - самопроизвольное превращение атомных ядер в ядра других элементов. Сопровождается ионизирующим излучением. Известно четыре типа радиоактивности:

  • альфа-распад - радиоактивное превращение атомного ядра при котором испускается альфа-частица;
  • бета-распад - радиоактивное превращение атомного ядра при котором испускается бета-частицы, т.е электроны или позитроны;
  • спонтанное деление атомных ядер - самопроизвольное деление тяжелых атомных ядер (тория, урана, нептуния, плутония и других изотопов трансурановых элементов). Периоды полураспада у спонтанно делящихся ядер составляют от нескольких секунд до 1020 для Тория-232;
  • протонная радиоактивность - радиоактивное превращение атомного ядра при котором испускаются нуклоны (протоны и нейтроны).

Что такое изотопы?

Изотопы - это разновидности атомов одного и того же химического элемента, обладающие разными массовыми числами, но имеющие одинаковый электрический заряд атомных ядер и потому занимающие в периодической системе элементов Д.И. Менделеева одинаковое место. Например: 55Cs131, 55Cs134m, 55Cs134, 55Cs135, 55Cs136, 55Cs137. Различают изотопы устойчивые (стабильные) и неустойчивые - самопроизвольно распадающиеся путем радиоактивного распада, так называемые радиоактивные изотопы. Известно около 250 стабильных, и около 50 естественных радиоактивных изотопов. Примером устойчивого изотопа может служить Pb206, Pb208 являющийся конечным продуктом распада радиоактивных элементов U235, U238 и Th232.

ПРИБОРЫ ДЛЯ измерения радиации и радиоактивности.

Для измерения уровней радиации и содержания радионуклидов на различных объектах используются специальные средства измерения:

  • для измерения мощности экспозиционной дозы гамма излучения, рентгеновского излучения, плотности потока альфа и бета-излучения, нейтронов, используются дозиметры различного назначения;
  • для определения вида радионуклида и его содержания в объектах окружающей среды используются спектрометрические тракты, состоящие из детектора излучения, анализатора и персонального компьютера с соответствующей программой для обработки спектра излучения.

В настоящее время в магазинах можно купить различные виды измерителей радиации различного типа, назначения, и обладающие широкими возможностями. Для примера приведём несколько моделей приборов, которые наиболее популярные в профессиональной и бытовой деятельности:

Профессиональный дозиметр-радиометр, был разработан для радиационного контроля денежных купюр операционистами банков, в целях исполнения "Инструкция Банка России от 04.12.2007 N 131-И "О порядке выявления, временного хранения, гашения и уничтожения денежных знаков с радиоактивным загрязнением"".

Лучший бытовой дозиметр от ведущего производителя, данный портативный измеритель радиации зарекомендовал себя временем. Благодаря простому использованию, небольшому размеру и низкой цене, пользователи назвали его народным, рекомендуют его друзьям и знакомым, не боясь за рекомендацию.

СРП-88Н (сцинтилляционный радиометр поиска) - профессиональный радиометр предназначен для поиска и обнаружения источников фотонного излучения. Имеет цифровой и стрелочный индикаторы, возможность установки порога срабатывания звукового сигнализатора, что значительно облегчает работу при обследовании территорий, проверки металлолома др. Блок детектирования выносной. В качестве детектора используется сцинтилляционный кристалл NaI. Автономный источник питания 4 элемента Ф-343.

ДБГ-06Т - предназначен для измерения мощности экспозиционной дозы (МЭД) фотонного излучения. Источник питания гальванический элемент типа «Корунд».

ДРГ-01Т1 - предназначен для измерения мощности экспозиционной дозы (МЭД) фотонного излучения.

ДБГ-01Н - предназначен для обнаружения радиоактивного загрязнения и оценки с помощью звукового сигнализатора уровня мощности эквивалентной дозы фотонного излучения. Источник питания гальванический элемент типа «Корунд». Диапазон измерения от 0.1 мЗв*ч-1 до 999.9 мЗв*ч-1

РКС-20.03 «Припять» - предназначен для контроля радиационной обстановки в местах проживания, пребывания и работы.

Дозиметры позволяют измерять:

  • величину внешнего гамма-фона;
  • уровни загрязнения радиоактивными веществами жилых и общественных помещений, территории, различных поверхностей
  • суммарное содержание радиоактивных веществ (без определения изотопного состава) в продуктах питания и других объектах внешней среды (жидких и сыпучих)
  • уровни загрязнения радиоактивными веществами жилых и общественных помещений, территории, различных поверхностей;
  • суммарное содержание радиоактивных веществ (без определения изотопного состава) в продуктах питания и других объектах внешней среды (жидких и сыпучих).

Как выбрать измеритель радиации и другие приборы для измерения радиации вы можете прочитать в статье "Бытовой дозиметр и индикатор радиоактивности. как выбрать? "

Какие виды ионизирующего излучения существуют?

Виды ионизирующего излучения. Основными видами ионизирующего излучения, с которыми нам чаще всего приходится сталкиваться являются:



Конечно существуют и другие виды излучения (нейтронное), но с ними мы сталкиваемся в повседневной жизни значительно реже. Различие этих видов излучения заключается в их физических характеристиках, в происхождении, в свойствах, в радиотоксичности и поражающем действии на биологические ткани.

Источники радиоактивности могут быть природными или искусственными. Природные источники ионизирующего излучения это естественные радиоактивные элементы находящиеся в земной коре и создающие природный радиационный фон, это ионизирующее излучение приходящее к нам из космоса. Чем больше активность источника (т.е. чем больше в нем распадается атомов за единицу времени), тем больше он испускает за единицу времени частиц или фотонов.

Искусственные источники радиоактивности могут содержать радиоактивные вещества полученные в ядерных реакторах специально или являющиеся побочными продуктами ядерных реакций. В качестве искусственных источников ионизирующего излучения могут быть и различные электровакуумные физические приборы, ускорители заряженных частиц и др. Например: кинескоп телевизора, рентгеновская трубка, кенотрон и др.

Основными поставщиками радия-226 в окружающую природную среду являются предприятия занимающиеся добычей и переработкой различных ископаемых материалов:

  • добыча и переработка урановых руд;
  • добыча нефти и газа; угольная промышленность;
  • промышленность строительных материалов;
  • предприятия энергетической промышленности и др.

Радий-226 хорошо поддается выщелачиванию из минералов содержащих уран, этим его свойством объясняется наличие значительных количеств радия в некоторых видах подземных вод (радоновых применяемых в медицинской практике), в шахтных водах. Диапазон содержания радия в подземных водах колеблется от единиц до десятков тысяч Бк/л. Содержание радия в поверхностных природных водах значительно ниже и может составлять от 0.001 до 1-2 Бк/л. Существенной составляющей природной радиоактивности является продукт распада радия-226- радий-222 (Радон). Радон - инертный, радиоактивный газ, наиболее долгоживущий (период полураспада 3.82 дня) изотоп эманации *, альфа-излучатель. Он в 7.5 раза тяжелее воздуха, поэтому преимущественно накапливается погребах, подвалах, цокольных этажах зданий, в шахтных горных выработках, и т.д. * - эманирование- свойство веществ содержащих изотопы радия (Ra226, Ra224, Ra223), выделять образующиеся при радиоактивном распаде эманацию(радиоактивные инертные газы).

Считается, что до 70% вредного воздействия на население связано с радоном в жилых зданиях (см. диаграмму). Основным источником поступления радона в жилые здания являются (по мере возрастания значимости):

  • водопроводная вода и бытовой газ;
  • строительные материалы (щебень, глина, шлаки, золошлаки и др.);
  • почва под зданиями.

Распространяется радон в недрах Земли крайне не равномерно. Характерно его накопление в тектонических нарушениях, куда он поступает по системам трещин из пор и микротрещин пород. В поры и трещины он поступает за счет процесса эманирования, образуясь в веществе горных пород при распаде радия-226.

Радоновыделение почвы определяется радиоактивностью горных пород, их эманированием и коллекторными свойствами. Так, сравнительно слаборадиоактивные породы, оснований зданий и сооружений могут, представлять большую опасность, чем более радиоактивные, если они характеризуются высоким эманированием, или рассечены тектоническими нарушениями, накапливающими радон. При своеобразном «дыхании» Земли, радон поступает из горных пород в атмосферу. Причем в наибольших количествах - из участков на которых имеются коллекторы радона (сдвиги, трещины, разломы и др.), т.е. геологические нарушения. Собственные наблюдения за радиационной обстановкой в угольных шахтах Донбасса показали, что в шахтах, характеризующихся сложными горно-геологическими условиями (наличие множественных разломов и трещин в угле вмещающих породах, высокая обводненность и др.) как правило, концентрация радона в воздухе горных выработок значительно превышает установленные нормативы.

Возведение жилых и общественно-хозяйственных сооружений непосредственно над разломами и трещинами горных пород, без предварительного определения радоновыделения из почвы, приводит к тому, что в них из недр Земли поступает грунтовый воздух, содержащий высокие концентрации радона, который накапливается в воздухе помещений и создает радиационную опасность.

Техногенная радиоактивность возникает в результате деятельности человека в процессе которой происходит перераспределение и концентрирование радионуклидов. К техногенной радиоактивности относится добыча и переработка полезных ископаемых, сжигание каменного угля и углеводородов, накопление промышленных отходов и многое другое. Уровни воздействия на человека различных техногенных факторов иллюстрирует представленная диаграмма 2 (А.Г. Зеленков "Сравнительное воздействие на человека различных источников радиации", 1990 г.)

Что такое "черные пески" и какую опасность они представляют?

Черные пески представляют собой минерал монацит - безводный фосфат элементов ториевой группы, главным образом церия и лантана (Ce, La)PO4, которые замещаются торием. Монацит содержит до 50-60% окисей редкоземельных элементов: окиси иттрия Y2O3 до 5%, окиси тория ThO2 до 5-10%, иногда до 28%. Удельный вес монацита составляет 4.9-5.5. С повышением содержания тория уд. вес возрастает. Встречается в пегматитах, иногда в гранитах и гнейсах. При разрушении горных пород включающих монацит, он накапливается в россыпях, которые представляют собой крупные месторождения.

Такие месторождения наблюдаются и на юге Донецкой области.

Россыпи монацитовых песков находящиеся на суше, как правило не вносят существенного изменения в сложившуюся радиационную обстановку. А вот месторождения монацита находящиеся у прибрежной полосы Азовского моря (в пределах Донецкой области) создают ряд проблем особенно с наступлением купального сезона.

Дело в том, что в результате морского прибоя за осенне-весенний период на побережье, в результате естественной флотации, скапливается значительное количество "черного песка", характеризующегося высоким содержанием тория-232 (до 15-20 тыс. Бк*кг-1 и более), который создает на локальных участках уровни гамма-излучения порядка 300 и более мкР*час-1. Естественно, отдыхать на таких участках рискованно, поэтому, ежегодно проводится сбор этого песка, выставляются предупреждающие знаки, закрываются отдельные участки побережья. Но все это не позволяет предотвратить нового накопления "черного песка".

Позволю высказать по этому поводу личную точку зрения. Причиной, способствующей выносу "черного песка" на побережье, возможно является тот факт, что на фарватере Мариупольского морского порта постоянно работают земснаряды по расчистке судоходного канала. Грунт, поднятый со дна канала, сваливается западнее судоходного канала, в 1-3 км от побережья (см. карту размещения мест свалки грунта), и при сильном волнении моря, с накатом на прибрежную полосу, грунт содержащий монацитовый песок выносится на побережье, где обогащается и накапливается. Однако все это требует тщательной проверки и изучения. И если это как, то снизить накопление "черного песка" на побережье, возможно, удалось бы просто переносом места свалки грунта в другое место.

Основные правила выполнения дозиметрических измерений.

При проведении дозиметрических измерений, прежде всего, необходимо строго придерживаться рекомендаций изложенных в технической документации на прибор.

При измерении мощности экспозиционной дозы гамма-излучения или эквивалентной дозы гамма-излучения необходимо соблюдать следующие правила:

  • при проведении любых дозиметрических измерений, если предполагается их постоянное проведения с целью наблюдения за радиационной обстановкой, необходимо строго соблюдать геометрию измерения;
  • для повышения достоверности результатов дозиметрического контроля проводится несколько измерений (но не менее 3-х), и вычисляется среднее арифметическое;
  • при выполнении измерений на территории выбирают участки вдали от зданий и сооружений (2-3 высоты); -измерения на территории проводят на двух уровнях, на высоте 0.1 и 1.0 м от поверхности грунта;
  • при измерении в жилых и общественных помещениях, измерения проводятся в центре помещения на высоте 1.0 м от пола.

При измерении уровней загрязнения радионуклидами различных поверхностей необходимо выносной датчик или прибор в целом, если выносного датчика нет, поместить в полиэтиленовый пакет (для предотвращения возможного загрязнения), и проводить измерение на максимально возможно близком расстоянии от измеряемой поверхности.

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса