Подпишись и читай
самые интересные
статьи первым!

Как решать неравенства с переменной. Неравенства с одной переменной

1. Понятие неравенства с одной переменной

2. Равносильные неравенства. Теоремы о равносильности неравенств

3. Решение неравенств с одной переменной

4. Графическое решение неравенств с одной переменной

5. Неравенства, содержащие переменную под знаком модуля

6. Основные выводы

Неравенства с одной переменной

Предложения 2х + 7 > 10-х, х 2 +7х < 2,(х + 2)(2х-3)> 0 называют неравенствами с одной переменной.

В общем виде это понятие определяют так:

Определение. Пусть f(х) и g(х) - два выражения с переменной х и областью определения X. Тогда неравенство вида f(х) > g(х) или f(х) < g(х) называется неравенством с одной переменной. Мно­жество X называется областью его определения.

Значение переменной x из множества X, при котором неравенство обращается в истинное числовое неравенство, называется его решени­ем. Решить неравенство - это значит найти множество его решений.

Так, решением неравенства 2 x + 7 > 10 -х, х ? R является число x = 5, так как 2·5 + 7 > 10 - 5 - истинное числовое неравенство. А множест­во его решений - это промежуток (1, ∞), который находят, выполняя преобразование неравенства: 2 x + 7 > 10- x => 3 x >3 => x >1.

Равносильные неравенства. Теоремы о равносильности неравенств

В основе решения неравенств с одной переменной лежит понятие равносильности.

Определение.Два неравенства называются равносильными, если их множества решений равны.

Например, неравенства 2 x + 7 > 10 и 2 x > 3 равносильны, так как их множества решений равны и представляют собой промежуток (2/3, ∞).

Теоремы о равносильности неравенств и следствия из них аналогич­ны соответствующим теоремам о равносильности уравнений. При их доказательстве используются свойства истинных числовых неравенств.

Теорема 3. Пусть неравенство f(х) > g(х) задано на множестве X и h (x ) - выражение, определенное на том же множестве. Тогда неравенства f(х) > g(х) и f(х)+ h(x) > g(х) + h(x) равносильны на множестве X.

Из этой теоремы вытекают следствия, которые часто используются при решении неравенств:

1) Если к обеим частям неравенства f(х) > g(х) прибавить одно и то же число d, то получим неравенство f(х) + d > g(х)+ d, равно­сильное исходному.

2) Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части неравенства в другую, поме­няв знак слагаемого на противоположный, то получим неравенство, равносильное данному.

Теорема 4. Пусть неравенство f(х) > g(х) задано на множестве X и h (х х из множества X выражение h(х) принимает положительные значения. Тогда неравенства f(х) > g(х) и f(х)· h(x) > g(х) · h(x) равносильны на множестве X.

f(х) > g(х) умножить на одно и то же положительное число d, то по­лучим неравенство f(х)·d > g(х) ·d, равносильное данному.

Теорема 5. Пусть неравенство f(х) > g(х) задано на множестве X и h (х ) - выражение, определенное на том же множестве, и для всех х их множества X выражение h (х ) принимает отрицательные значения. Тогда неравенства f(х) > g(х) и f(х)· h(x) > g(х)· h(x) равносильны на множестве X .

Из этой теоремы вытекает следствие: если обе части неравенства f(х) > g(х) умножить на одно и то же отрицательное число d и знак неравенства поменять на противоположный, то получим неравенство f(х)·d > g(х) ·d, равносильное данному.

Решение неравенств с одной переменной

Решим неравенство 5х - 5 < 2х - 16, х ? R , и обоснуем все преоб­разования, которые мы будем выполнять в процессе решения.

Решением неравенства х < 7 является промежуток (-∞, 7) и, сле­довательно, множеством решений неравенства 5х - 5 < 2х + 16 яв­ляется промежуток (-∞, 7).

Упражнения

1. Установите, какие из следующих записей являются неравенства­ми с одной переменной:

а) -12 - 7х < 3x + 8; г) 12х + 3(х - 2);

б) 15(x + 2)>4; д) 17-12·8;

в) 17-(13 + 8) < 14-9; е) 2х 2 + 3x -4> 0.

2. Является ли число 3 решением неравенства 6(2х + 7) < 15(х + 2), х ? R ? А число 4,25?

3. Равносильны ли на множестве действительных чисел следующие пары неравенств:

а) -17х < -51 и х > 3;

б) (3x -1)/4 >0 и 3х -1>0;

в) 6-5x >-4 и х <2?

4. Какие из следующих высказываний истинны:

а) -7 х < -28 => x >4;

б) x < 6 => x < 5;

в) х < 6 => х < 20?

5. Решите неравенство 3(x - 2) - 4(х + 1) < 2(х - 3) - 2 и обоснуйте все преобразования, которые будете при этом выполнять.

6. Докажите, что решением неравенства 2(х + 1) + 5 > 3 - (1 - 2х ) является любое действительное число.

7. Докажите, что не существует действительного числа, которое являлось бы решением неравенства 3(2 - х ) - 2 > 5 - 3х .

8. Одна сторона треугольника равна 5 см, а другая 8 см. Какой может быть длина третьей стороны, если периметр треугольника:

а) меньше 22 см;

б) больше 17 см?

ГРАФИЧЕСКОЕ РЕШЕНИЕ НЕРАВЕНСТВ С ОДНОЙ ПЕРЕМЕН­НОЙ. Для графического решения неравенства f (х) > g (х) нужно построить гра­фики функций

у = f (х) = g (х) и выбрать те проме­жутки оси абсцисс, на которых график функции у = f (х) расположен выше графика функции у = g (х).

Пример 17.8. Решите графически неравенство х 2 - 4 > 3х.

У - х* - 4

Решение. Построим в одной системе координат графи­ки функций

у = х 2 - 4 и у = Зх (рис. 17.5). Из рисунка видно, что графики функций у = х 2 - 4 расположен выше графика функции у = 3х при х < -1 и х > 4, т.е. множество решений исходного неравенства есть множество

(- ¥; -1) È (4; + оо).

Ответ: х Î (- оо; -1) и (4; + оо).

Графиком квадратичной функции у = ах 2 + bх + с является парабола с ветвя­ми, направленными вверх, если а > 0, и вниз, если а < 0. При этом возможны три случая: парабола пересекает ось Ох (т.е. уравнение ах 2 + + с = 0 имеет два различных корня); парабола касается оси х (т.е. уравнение ах 2 + bх + с = 0 имеет один корень); парабола не пересекает ось Ох (т.е. уравнение ах 2 + + с = 0 не имеет корней). Таким образом, возможны шесть положений параболы, служа­щей графиком функции у = ах 2 + bх + с (рис. 17.6). Используя эти иллюстрации, можно решать квадратные неравенства.

Пример 17.9. Решите неравенство: а) 2х г + 5х - 3 > 0; б) -Зх 2 - - 6 < 0.

Решение, а) Уравнение 2х 2 + 5х -3 = 0 имеет два корня: х, = -3, х 2 = 0,5. Парабола, служащая графиком функции у = 2х 2 + 5х -3, показана на рис. а. Неравенство 2х 2 + 5х -3 > 0 выполняется при тех значениях х, при которых точки параболы лежат выше оси Ох: это будет при х < х х или при х > х г> т.е. при х < -3 или при х > 0,5. Значит, множество решений исходного неравенства есть множество (- ¥; -3) и (0,5; + ¥).

б) Уравнение -Зх 2 + 2х- 6 = 0 не имеет действительных корней. Парабола, служащая графиком функции у = - 3х 2 - 2х - 6, показана на рис. 17.6 Неравенство -3х 2 - 2х - 6 < О выполняется при тех значениях х, при которых точки параболы лежат ниже оси Ох. По­скольку вся парабола лежит ниже оси Ох, то множество решений исходного неравенства есть множество R.

НЕРАВЕНСТВА, СОДЕРЖАЩИЕ ПЕРЕМЕННУЮ ПОД ЗНАКОМ МОДУЛЯ. При решении данных неравенств следует иметь в виду, что:

| f(х) | =

f(х) , если f(х) ³ 0,

- f(х) , если f(х) < 0,

При этом область допустимых значений неравенства следует разбить на ин­тервалы, на каждом из которых выражения, стоящие под знаком модуля, сохра­няют знак. Затем, раскрывая модули (с учетом знаков выражений), нужно решать неравенство на каждом интервале и полученные решения объединять в множество решений исходного неравенства.

Пример 17.10. Решите неравенство:

|х -1| + |2- х| > 3+х.

Решение. Точки х = 1 и х = 2 делят числовую ось (ОДЗ неравенства (17.9) на три интервала: х < 1, 1 £ х £.2, х > 2. Решим данное неравенство на каждом из них. Если х < 1, то х - 1 < 0 и 2 – х > 0; поэтому |х -1| = - (х - I), |2 - х | = 2 - х. Значит, неравенство (17.9) принимает вид: 1- х + 2 - х > 3 + х, т.е. х < 0. Таким образом, в этом случае решениями неравенства (17.9) являются все отрицательные числа.

Если 1 £ х £.2, то х - 1 ³ 0 и 2 – х ³ 0; поэтому | х- 1| = х - 1, |2 - х| = 2 – х. .Значит, имеет место система:

х – 1 + 2 – х > 3 + х,

Полученная система неравенств решений не имеет. Следовательно, на интервале [ 1; 2] множество решений неравенства (17.9) пусто.

Если х > 2, то х - 1 >0 и 2 – х <0; поэтому | х - 1| = х- 1, |2-х| = -(2- х). Значит, имеет место система:

х -1 + х – 2 > 3+х,

х > 6 или

Объединяя найденные решения на всех частях ОДЗ неравенства (17.9), получаем его решение - множество (-¥; 0) È (6; +оо).

Иногда полезно воспользоваться геометрической интерпретацией модуля действительного числа, согласно которой | а | означает расстояние точки а коор­динатной прямой от начала отсчета О, а | а - b | означает расстояние между точка­ми а и b на координатной прямой. Кроме того, можно использовать метод возве­дения в квадрат обеих частей неравенства.

Теорема 17.5. Если выражения f (х) и g (х) при любых х принимают толь­ко неотрицательные значения, то неравенства f (х) > g (х) и f (х) ² > g (х) ² равносильны.

58. Основные выводы § 12

В данном параграфе мы определили следующие понятия:

Числовое выражение;

Значение числового выражения;

Выражение, не имеющее смысла;

Выражение с переменной (переменными);

Область определения выражения;

Тождественно равные выражения;

Тождество;

Тождественное преобразование выражения;

Числовое равенство;

Числовое неравенство;

Уравнение с одной переменной;

Корень уравнения;

Что значит решить уравнение;

Равносильные уравнения;

Неравенство с одной переменной;

Решение неравенства;

Что значит решить неравенство;

Равносильные неравенства.

Кроме того, мы рассмотрели теоремы о равносильности уравнений и неравенств, являющиеся основой их решения.

Знание определений всех названных выше понятий и теорем о рав­носильности уравнений и неравенств - необходимое условие методи­чески грамотного изучения с младшими школьниками алгебраическо­го материала.


Если в школьном курсе математики и алгебры отдельно выделить тему «неравенства», то основную часть времени постигаются азы работы с неравенствами , которые содержат в своей записи переменную. В данной статье мы разберем, что такое неравенства с переменными, скажем, что называют их решением, а также разберемся, как записываются решения неравенств. Для пояснения будем приводить примеры и необходимые комментарии.

Навигация по странице.

Что такое неравенства с переменными?

Например, если неравенство не имеет решений, то так и пишут «нет решений» или используют знак пустого множества ∅.

Когда общим решением неравенства является одно число, то его и так и записывают, к примеру, 0 , −7,2 или 7/9 , а иногда еще заключают в фигурные скобки.

Если решение неравенства представляется несколькими числами и их количество невелико, то их просто перечисляют через запятую (или через точку с запятой), или записывают через запятую в фигурных скобках. Например, если общее решение неравенства с одной переменной составляют три числа −5 , 1,5 и 47 , то записывают −5 , 1,5 , 47 или {−5, 1,5, 47} .

А для записи решений неравенств, имеющих бесконечное множество решений используют как принятые обозначения множеств натуральных, целых, рациональных, действительных чисел вида N , Z , Q и R , обозначения числовых промежутков и множеств отдельных чисел, простейшие неравенства, так и описание множества через характеристическое свойство, и все не названные способы. Но на практике наиболее часто пользуются простейшими неравенствами и числовыми промежутками. Например, если решением неравенства является число 1 , полуинтервал (3, 7] и луч , ∪ ; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.

  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.
  • Предложения 2х+7>10-х, х 2 +7х<2, (х+2)(2х-3)> 0 называют неравенствами с одной переменной.

    В общем виде это понятие определяют так:

    Определение .Пусть f(х) и q(х) - два выражения с переменной х и областью определения X. Тогда неравенство вида f(х) < q(х) или f(х) > q(х) называется неравенством с одной переменной. Мно­жество Х называется областью его определения.

    Значение переменной х из множества X, при котором неравенство обращается в истинное числовое неравенство, называется его решением.Решить неравенство - это значит найти множество его решений.

    Так, решением неравенства 2х +7>10-х , х Î R является число х=5, так как 2×5+7>10-5- истинное числовое неравенство. А множест­во его решений - это промежуток (1, ¥), который находят, выполняя преобразование неравенства: 2х+7>10-х Þ 3х> Þ х>1.

    В основе решения неравенств с одной переменной лежит понятие равносильности.

    Определение. Два неравенства называются равносильными, если их множества решений равны.

    Например , неравенства 2х+7>10 и 2х>3 равносильны, так как их множества решений равны и представляют собой промежуток

    Теоремы о равносильности неравенств и следствия из них аналогичны соответствующим теоремам о равносильности уравнений. При их доказательстве используется свойства истинных числовых неравенств.

    Теорема 3 . Пусть неравенство f(х) > q(х) задано на множестве Х и h(х) - выражение, определенное на том же множестве. Тогда неравенст­ва f(х) > q(х) и f(х)+ h(х) > q(х)+ h(х) равносильны на множестве X.

    Из этой теоремы вытекают следствия, которые часто используются при решении неравенств:

    1) Если к обеим частям неравенства f(х) > q(х) прибавить одно и то же число d, то получим неравенство f(х)+ d > q(х)+ d, равносильное исходному.

    2) Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части неравенства в другую, поменяв знак слагаемого на противоположный, то получим неравенство, равносильное данному.

    Теорема 4. Пусть неравенство f(х) > q(х) задано на множестве Х и h(х) - выражение, определенное на том же множестве, и для всех х из множества Х выражение h(х) принимает положительные значения. Тогда неравенства f(х)× h(х) > q(х)× h(х) равносильны на множестве X.

    Из этой теоремы вытекает следствие: если обе части неравенства f(х) > q(х)умножить на одно и то же положительное число d, то по­лучим неравенство f(х)× d > q(х)× d , равносильное данному.

    Теорема 5 . Пусть неравенство f(х) > q(х) задано на множестве Х и h(х) - выражение, определенное на том же множестве, и для всех х их множества Х выражение h(х) принимает отрицательные значения. Тогда неравенства f(х) > q(х) b f(х)× h(х) < q(х)× h(х) равносильны на множестве X.


    Из этой теоремы вытекает следствие: если обе части неравенства f(х) > q(х) умножить на одно и то же отрицательное число d и знак неравенства поменять на противоположный, то получим неравенство f(х)× d < q(х) × d, равносильное данному.

    Решим неравенство 5х - 5 < 2х - 16,х Î R ,и обоснуем все преоб­разования, которые мы будем выполнять в процессе решения.

    Как решать линейные неравенства с одной переменной вида ax+b>cx+d?

    Для этого используем всего два правила.

    1) Слагаемые можно переносить из одной части неравенства в другую с противоположным знаком. Знак неравенства при этом не меняется.

    2) Обе части неравенства можно (или другой переменной). При делении на положительное число знак неравенства не меняется. При делении на отрицательное число знак неравенства изменяется на противоположный.

    В общем виде решение линейного неравенства с одной переменной

    Cx + d\]" title="Rendered by QuickLaTeX.com">

    можно изобразить так:

    1) Неизвестные переносим в одну сторону, известные — в другую с противоположными знаками:

    Title="Rendered by QuickLaTeX.com">

    Title="Rendered by QuickLaTeX.com">

    2) Если число перед иксом не равно нулю (a-c≠0), обе части неравенства делим на a-c.

    Если a-c>0, знак неравенства не изменяется:

    Title="Rendered by QuickLaTeX.com">

    Title="Rendered by QuickLaTeX.com">

    Если a-c<0, знак неравенства изменяется на противоположный:

    Title="Rendered by QuickLaTeX.com">

    Если a-c=0, то это — частный случай. Частные случаи решения линейных неравенств рассмотрим отдельно.

    Title="Rendered by QuickLaTeX.com">

    Это — линейное неравенство. Переносим неизвестные в одну сторону, известные — в другую с противоположными знаками:

    Title="Rendered by QuickLaTeX.com">

    Title="Rendered by QuickLaTeX.com">

    Обе части неравенства делим на число, стоящее перед иксом. Так как -2<0, знак неравенства изменяется на противоположный:

    Title="Rendered by QuickLaTeX.com">

    Так как , 10 на числовой прямой отмечаем выколотой точкой. , на минус бесконечность.

    Так как неравенство строгое и точка выколотая, 10 записываем в ответ с круглой скобкой.

    Это — линейное неравенство. Неизвестные — в одну сторону, известные — в другую с противоположными знаками:

    Обе части неравенства делим на число, стоящее перед иксом. Так как 10>

    Title="Rendered by QuickLaTeX.com">

    Так как неравенство нестрогое, -2,3 на числовой прямой отмечаем закрашенной точкой. Штриховка от -2,3 идёт вправо, на плюс бесконечность.

    Так как неравенство строгое и точка закрашенная, -2,3 в ответ записываем с квадратной скобкой.

    Это — линейное неравенство. Неизвестные — в одну сторону, известные — в другую с противоположным знаком.

    Обе части неравенства делим на число, стоящее перед иксом. Поскольку 3>0, знак неравенства при этом не изменяется:

    Title="Rendered by QuickLaTeX.com">

    Так как неравенство строгое, x=2/3 на числовой прямой изображаем выколотой точкой.

    Так как неравенство строгое и точка выколотая, в ответ 2/3 записываем с круглой скобкой.

    Романишина Дина Соломоновна, учитель математики гимназии №2 г. Хабаровска

    1. Уравнения с одной переменной.

    Равенство, содержащее переменную, называют уравнением с одной переменной, или уравнением с одним неизвестным. Например, уравнением с одной переменной является равенство 3(2х+7)=4х-1.

    Корнем или решением уравнения называется значение переменной, при котором уравнение обращается в верное числовое равенство. Например, число 1 является решением уравнения 2х+5=8х-1. Уравнение х2+1=0 не имеет решения, т.к. левая часть уравнения всегда больше нуля. Уравнение (х+3)(х-4) =0 имеет два корня: х1= -3, х2=4.

    Решить уравнение - значит найти все его корни или доказать, что корней нет.

    Уравнения называются равносильными, если все корни первого уравнения являются корнями второго уравнения и наоборот, все корни второго уравнения являются корнями первого уравнения или, если оба уравнения не имеют корней. Например, уравнения х-8=2 и х+10=20 равносильны, т.к. корень первого уравнения х=10 является корнем и второго уравнения, и оба уравнения имеют по одному корню.

    При решении уравнений используются следующие свойства:

    Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получите уравнение, равносильные данному.

    Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

    Уравнение ах=b, где х – переменная, а и b – некоторые числа, называется линейным уравнением с одной переменной.

    Если а¹0, то уравнение имеет единственное решение

    .

    Если а=0, b=0, то уравнению удовлетворяет любое значение х.

    Если а=0, b¹0, то уравнение не имеет решений, т.к. 0х=b не выполняется ни при одном значении переменной.

    Пример 1. Решить уравнение: -8(11-2х)+40=3(5х-4)

    Раскроем скобки в обеих частях уравнения, перенесем все слагаемые с х в левую часть уравнения, а слагаемые, не содержащие х, в правую часть, получим:

    16х-15х=88-40-12

    Пример 2. Решить уравнения:

    х3-2х2-98х+18=0;

    Эти уравнения не являются линейными, но покажем, как можно решать такие уравнения.

    3х2-5х=0; х(3х-5)=0. Произведение равно нулю, если один из множителей равен нулю, получаем х1=0; х2=

    . .

    Разложить на множители левую часть уравнения:

    х2(х-2)-9(х-2)=(х-2)(х2-9)=(х-2)(х-3)(х-3), т.е. (х-2)(х-3)(х+3)=0. Отсюда видно, что решениями этого уравнения являются числа х1=2, х2=3, х3=-3.

    с) Представим 7х, как 3х+4х, тогда имеем: х2+3х+4х+12=0, х(х+3)+4(х+3)=0, (х+3)(х+4)=0, отсюда х1=-3, х2=- 4.

    Ответ: -3; - 4.

    Пример 3. Решить уравнение: ½х+1ç+½х-1ç=3.

    Напомним определение модуля числа:

    Например: ½3½=3, ½0½=0, ½- 4½= 4.

    В данном уравнении под знаком модуля стоят числа х-1 и х+1. Если х меньше, чем –1, то число х+1 отрицательное, тогда ½х+1½=-х-1. А если х>-1, то ½х+1½=х+1. При х=-1 ½х+1½=0.

    Таким образом,

    Аналогично

    а) Рассмотрим данное уравнение½х+1½+½х-1½=3 при х£-1, оно равносильно уравнению -х-1-х+1=3, -2х=3, х=

    , это число принадлежит множеству х£-1.

    b) Пусть -1 < х £ 1, тогда данное уравнение равносильно уравнению х+1-х+1=3, 2¹3 уравнение не имеет решения на данном множестве.

    с) Рассмотрим случай х>1.

    х+1+х-1=3, 2х=3, х=

    . Это число принадлежит множеству х>1.

    Ответ: х1=-1,5; х2=1,5.

    Пример 4. Решить уравнение:½х+2½+3½х½=2½х-1½.

    Покажем краткую запись решения уравнения, раскрывая знак модуля «по промежуткам».

    х £-2, -(х+2)-3х=-2(х-1), - 4х=4, х=-2Î(-¥; -2]

    –2<х£0, х+2-3х=-2(х-1), 0=0, хÎ(-2; 0]

    0<х£1, х+2+3х=-2(х-1), 6х=0, х=0Ï(0; 1]

    х>1, х+2+3х=2(х-1), 2х=- 4, х=-2Ï(1; +¥)

    Ответ: [-2; 0]

    Пример 5. Решить уравнение: (а-1)(а+1)х=(а-1)(а+2), при всех значениях параметра а.

    В этом уравнении на самом деле две переменных, но считают х–неизвестным, а а–параметром. Требуется решить уравнение относительно переменной х при любом значении параметра а.

    Если а=1, то уравнение имеет вид 0×х=0, этому уравнению удовлетворяет любое число.

    Если а=-1, то уравнение имеет вид 0×х=-2, этому уравнению не удовлетворяет ни одно число.

    Если а¹1, а¹-1, тогда уравнение имеет единственное решение

    .

    Ответ: если а=1, то х – любое число;

    если а=-1, то нет решений;

    если а¹±1, то

    .

    2. Системы уравнений с двумя переменными.

    Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство. Решить систему - значит найти все ее решения или доказать, что их нет. Две системы уравнений называются равносильными, если каждое решение первой системы является решением второй системы и каждое решение второй системы является решением первой системы или они обе не имеют решений.

    При решении линейных систем используют метод подстановки и метод сложения.

    Пример 1. Решить систему уравнений:

    Для решения этой системы применим метод подстановки. Выразим из первого уравнения х и подставим это значение

    во второе уравнение системы, получим ,

    Ответ: (2; 3).

    Пример 2. Решить систему уравнений:

    Для решения этой системы применим метод сложения уравнений. 8х=16, х=2. Подставим значение х=2 в первое уравнение, получим 10-у=9, у=1.

    Ответ: (2; 1).

    Пример 3. Решить систему уравнений:

    Эта система равносильна одному уравнению 2х+у=5, т.к. второе уравнение получается из первого умножением на 3. Следовательно, ей удовлетворяет любая пара чисел (х; 5-2х). Система имеет бесконечное множество решений.

    Ответ: (х; 5-2х), х–любое.

    Пример 4. Решить систему уравнений:

    Умножим первое уравнение на –2 и сложим со вторым уравнением, получим 0×х+0×у=-6. Этому уравнению не удовлетворяет ни одна пара чисел. Следовательно, эта система не имеет решений.

    Ответ: система не имеет решений.

    Пример 5. Решить систему:

    Из второго уравнения выражаем х=у+2а+1 и подставляем это значение х в первое уравнение системы, получаем

    . При а=-2 уравнение не а=-2 имеет решения, если а¹-2, то .

    Ответ: при a=-2система не имеет решения,

    при а¹-2 система имеет решение

    .

    Пример 6. Решить систему уравнений:

    Нам дана система из трех уравнений с тремя неизвестными. Применим метод Гаусса, который состоит в том, что равносильными преобразованиями приводят данную систему к треугольной форме. Прибавим к первому уравнению второе, умноженное на –2.

    2х-2у-2z=-12

    3х-3у-3z=-18

    наконец прибавим к этому уравнению уравнение у-z=-1, умноженное на 2, получим - 4z=-12, z=3. Итак получаем систему уравнений:

    х+у+z=6

    z=3, которая равносильна данной.

    Система такого вида называется треугольной.

    Ответ: (1; 2; 3).

    3. Решение задач с помощью уравнений и систем уравнений.

    Покажем на примерах, как можно решать задачи с помощью уравнений и систем уравнений.

    Пример 1. Сплав олова и меди массой 32 кг содержит 55% олова. Сколько чистого олова надо добавить в сплав, чтобы в новом сплаве щсодержалось 60% олова?

    Решение. Пусть масса олова, добавленная к исходному сплаву, составляет х кг. Тогда сплав массой (32+х)кг будет содержать 60% олова и 40% меди. Исходный сплав содержал 55% олова и 45% меди, т.е. меди в нем было 32·0,45 кг. Так как масса меди в исходном и новом сплавах одна и та же, то получим уравнение 0,45·32=0,4(32+х).

    Решив его, находим х=4, т.е. в сплав надо добавить 4 кг олова.

    Пример 2. Задумано двузначное число, у которого цифра десятков на 2 меньше цифры единиц. Если это число разделить на сумму его цифр, то в частном получится 4 и в остатке 6. Какое число задумано?

    Решение. Пусть цифра единиц есть х, тогда цифра десятков равна х-2 (х>2), задуманное число имеет вид 10(х-2)+х=11х-20. Сумма цифр числа х-2+х=2х-2. Следовательно, разделив 11х-20 на 2х-2, получим в частном 4 и в остатке 6. Составляем уравнение: 11х-20=4(2х-2)+6, т.к. делимое равно делителю, умноженному на частное, плюс остаток. Решив это уравнение, получим х=6. Итак, было задумано число 46.

    Включайся в дискуссию
    Читайте также
    Пьер и мари кюри открыли радий
    Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
    Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса