Подпишись и читай
самые интересные
статьи первым!

Гипербола и ее свойства. Свойства гиперболы Нули гиперболы

Здравствуйте, уважаемые читатели блога сайт. Все мы в жизни хоть раз говорили или слышали подобные выражение (а кто-то и не раз): ВЕЧНО ОПАЗДЫВАЕТЕ или СТО ЛЕТ НЕ ВИДЕЛИСЬ.

И мало кто задумывался, что эти фразы лишены какого-то здравого смысла. Так, человек просто не может «вечно опаздывать». И не может кто-то не видиться «сто лет», хотя бы потому, что люди редко так долго живут.

Подобные преувеличения в русском языке называются гиперболами и именно о них пойдет речь в этой публикации.

Гипербола - это красивое преувеличение

Само это слово греческое – «hyperbole» и обозначает оно «чрезмерность, избыток, преувеличение».

Гипербола – это одно из средств усиления эмоциональной оценки , заключающееся в чрезмерном преувеличении каких-либо явлений, качеств, свойств или процессов. Благодаря этому создается более впечатляющий образ.

Причем часто преувеличение доходит до совершенно непостижимых понятий, иногда даже . Любой иностранец, если будет переводить дословно, будет явно озадачен. Мы же давно к ним привыкли, и воспринимаем их как совершенно нормальные.

Вот примеры наиболее часто используемых в обиходе гипербол:

НАПУГАТЬ ДО СМЕРТИ
ТЫСЯЧА ИЗВИНЕНИЙ
ХОТЬ ЗАЛЕЙСЯ
РЕКИ КРОВИ
ГОРЫ ТРУПОВ
ЖДУ ЦЕЛУЮ ВЕЧНОСТЬ
ЕХАТЬ ЗА ТЫСЯЧУ КИЛОМЕТРОВ
ВЕСЬ ДЕНЬ ПРОСТОЯЛА
КУЧА ДЕНЕГ
ПИР НА ВЕСЬ МИР
МОРЕ СЛЕЗ
НЕ ВИДЕЛИСЬ 100 ЛЕТ
ОКЕАН СТРАСТЕЙ
ВЕСИТ СТО ПУДОВ
ЗАДУШИТЬ В ОБЪЯТЬЯХ
ИСПУГАТЬСЯ ДО СМЕРТИ

Все перечисленные выражения мы постоянно используем в разговорной речи. И ради эксперимента просто попробуйте разобрать их дословно и увидите, насколько некоторые из них смешны, а порой и абсурдны.

Ну, например, «хоть залейся» — это должно быть такое количество жидкости, чтобы ее хватило на целый бассейн, в который можно было бы погрузиться с головой. Хотя на самом деле мы этим выражением просто хотим сказать, что напитков у нас много — даже больше чем нужно.

Или фраза «куча денег» на самом ведь деле обозначает просто хорошее финансовое состояние, а не то, что человек собрал все свои сбережения и давай их складывать в одну кучу.

А выражение «ехать за тысячу километров» мы употребляем, ни когда речь идет о реальном расстоянии, например, от Москвы до Волгограда или Ростова-на-Дону. А просто в значении «далеко», хотя на самом деле в реальных цифрах там расстояние может быть всего в несколько километров.

И так можно «развенчать» абсолютно любую гиперболу. Но делать этого не стоит. Они и не должны означать абсолютную правду, их задача – наиболее живописно охарактеризовать конкретную ситуацию или мысль, усиливая ее эмоциональный окрас .

Примеры гипербол в художественной литературе

На самом деле подобные преувеличения – это очень старый литературный прием. Он использовался , а это было без малого тысячу лет назад. С помощью гипербол многократно усиливали силу богатырей и их противников.

Сон богатырский длился 12 ДНЕЙ (ну не может человек спать почти две недели)

На пути богатыря стояли силы несметные – ВОЛК ИХ ЗА ДЕНЬ НЕ ОБЕЖИТ, ВОРОН ЗА ДЕНЬ НЕ ОБЛЕТИТ (это сколько врагов должно быть – миллион?)

Махнет богатырь рукой – СРЕДИ ВРАГОВ УЛИЦА, махнет другой – ПЕРЕУЛОК (то есть одним ударом богатырь убивает сразу несколько десятков)

Взял Илья Муромец палицу ВЕСОМ СТО ПУДОВ (тут надо понимать, что сто пудов – это полторы тонны)

Соловей-разбойник свистит – ЛЕС К ЗЕМЛЕ КЛОНИТСЯ, а ЛЮДИ МЕРТВЫМИ ПАДАЮТ (ну тут совсем что-то из разряда сказки)

Точно такие же гиперболы встречаются и в «Слове о полку Игореве» . Например:

«Русичи червлеными щитами перегородили широкие поля, ища себе честь, а князю славы» или «Войско такое, что можно Волгу веслами расплескать, а Дон вычерпать шлемами».

Среди писателей больше всего гипербол встречается у Николая Васильевича Гоголя . Преувеличения есть практически в каждом его известном произведении. Вот, например, он описывает реку Днепр:

Редкая птица долетит до середины Днепра.
Днепр как дорога без конца в длину и без меры в ширину.

Или использует преувеличения в своих , вкладывая их в уста героев:

В муку бы вас все стер! (Городничий)
Тридцать пять тысяч одних курьеров… Меня сам государственный совет боится. (Хлестаков)

А в «Мертвых душах» есть такие слова: «Бесчисленны человеческие страсти как морские пески».

Гиперболы использует практически любой писатель или поэт. С их помощью они, например, более красочно описывают характер героев произведений или показывают свое авторское отношение к ним.

Причем писатели зачастую не используют уже устоявшиеся выражения, а стараются придумать что-то свое.

Вот еще примеры гипербол в литературе :

  1. И ядрам пролетать мешала гора кровавых тел (Лермонтов)
  2. Закат пылал во сто сорок солнц (Маяковский)
  3. Миллион терзаний (Грибоедов)
  4. Порядочный человек за вас за тридевять земель готов убежать (Достоевский)
  5. И сосна до звезд достает (Мандельштам)
  6. Во сне дворник стал тяжелым как комод (Ильф и Петров)

Примеры гипербол в рекламе

Конечно, мимо такого интересного приема, который позволяет усилить реальное значение слов , не могли пройти и рекламщики. Масса слоганов основана на этом принципе. Ведь задача – привлечь внимание клиента, обещая при этом «золотые горы» и всячески подчеркивая уникальность товара:

  1. Вкус на грани возможного (жевательная резинка «Стиморол»)
  2. Контроль над стихией (кроссовки «Адидас»)
  3. Король салатов (майонез «Оливьез»)

В создании рекламных роликов также часто используется принцип гиперболы. Например, серия знаменитых видео про батончики «Сникерс» со слоганом «Ты не ты, когда голоден». Там, где различные персонажи превращаются в совершенно других людей и начинают творить всякие глупости, и только шоколадный батончик способен вернуть их в привычную русло.

В этих роликах явно гиперболизировано (сильно преувеличено) чувство голода и «чудодейственная» сила самого «Сникерса».

Ну и самый простой пример гипербол, который применяют в рекламе, это выражения типа «самый лучший», «самый стильный», «самый комфортный» и так далее, а про цены, наоборот, говорят «самые низкие».

Вместо заключения

Придать большую выразительность и эмоциональную окраску любому выражению можно не только с помощью гиперболы. Есть в русском языке прием, который является ее полной противоположностью. Он не преувеличивает, а, наоборот, уменьшает значение.

Не успеешь глазом моргнуть, а годы уже пролетели.

Называется такой прием « ». Об этом подробно – в нашей следующей статье.

Удачи вам! До скорых встреч на страницах блога сайт

Вам может быть интересно

Что такое инсинуация: значение слова, характеристика, примеры Многозначные слова - это примеры разных граней русского языка Синекдоха - это пример метонимии в русском языке Фамильярность: значение слова, примеры Профанация - это невежество профанов, которые считают способным оскорблять то, что не доступно их пониманию Что такое риторический вопрос и для чего он предназначен Эвфемизм - это фиговый листок русского языка Аллюзии - это новое с намеком на старое Ассонанс - это единство гласных Диалектизмы - это слова с местным колоритом Литота - это преуменьшение и смягчение для создания образа

Гиперболой называется геометрическое место точек плоскости, координаты которых удовлетворяют уравнению

Параметры гиперболы:

Точки F 1 (–c, 0), F 2 (c , 0), где называются фокусами гиперболы, при этом величина 2с (с > a > 0) определяет междуфокусное расстояние . Точки А 1 (–а , 0), А 2 (а , 0) называются вершинами гиперболы , при этом А 1 А 2 = 2а образует действительную ось гиперболы, а В 1 В 2 = 2b мнимую ось (В 1 (0, –b ), B 2 (0, b )), О центр гиперболы.


Величина называется эксцентриситетом гиперболы, она характеризует меру «сжатости» гиперболы;

фокальные радиусы гиперболы (точка М принадлежит гиперболе), причем r 1 = a + εx , r 2 = –a + εx для точек правой ветви гиперболы, r 1 = – (a + εx ), r 2 = – (–a + εx ) – для точек левой ветви;

директрисы гиперболы;

уравнения асимптот .

Для гиперболы справедливо: ε > 1, директрисы не пересекают границу и внутреннюю область гиперболы, а также обладают свойством

Говорят, что уравнение

задает уравнение гиперболы, сопряженной данной (рис. 20). Его можно записать также в виде

В таком случае ось мнимая, фокусы лежат на оси . Все остальные параметры определяются аналогично как для гиперболы (25).


Точки гиперболы обладают важным характеристическим свойством: абсолютное значение разности расстояний от каждой из них до фокусов есть величина постоянная, равная 2a (рис. 19).

Для параметрического задания гиперболы в качестве параметра t может быть взята величина угла между радиус-вектором точки, лежащей на гиперболе, и положительным направлением оси Ox :

Пример 1. Привести уравнение гиперболы

9x 2 – 16y 2 = 144

к каноническому виду, найти еепараметры, изобразить гиперболу.

Решение. Разделим левую и правую части заданного уравнения на 144: Из последнего уравнения непосредственно следует: a = 4, b = 3, c = 5, O (0, 0) – центр гиперболы. Фокусы находятся в точках F 1 (–5, 0) и F 2 (5, 0), эксцентриситет ε = 5/4, директрисы D 1 и D 2 описываются уравнениями D 1: x = –16/5, D 2: x = 16/5, асимптоты l 1 и l 2 имеют уравнения

Сделаем чертеж. Для этого по осям Ox и Oy симметрично относительно точки (0, 0) отложим отрезки А 1 А 2 = 2а = 8 и В 1 В 2 = 2b = 6 соответственно. Через полученные точки А 1 (–4, 0), А 2 (4, 0), В 1 (0, –3), В 2 (0, 3) проведем прямые, параллельные координатным осям. В результате получим прямоугольник (рис. 21), диагонали которого лежат на асимптотах гиперболы. Строим гиперболу




Для нахождения угла φ между асимптотами гиперболы воспользуемся формулой

.

,

откуда получаем

Пример 2. Определить тип, параметры и расположение на плоскости кривой, уравнение которой

Решение. С помощью метода выделения полных квадратов упростим правую часть данного уравнения:

Получаем уравнение

которое делением на 30 приводится к виду

Это уравнение гиперболы, центр которой лежит в точке действительная полуось – мнимая полуось – (рис. 22).


Пример 3. Составить уравнение гиперболы, сопряженной относительно гиперболы определить ее параметры и сделать чертеж.

Решение. Уравнение гиперболы, сопряженной данной, –

Действительная полуось b = 3, мнимая – а = 4, половина междуфокусного расстояния Вершинами гиперболы служат точки B 1 (0, –3) и В 2 (0, 3); ее фокусы находятся в точках F 1 (0, –5) и F 2 (0, 5); эксцентриситет ε = с /b = 5/3; директрисы D 1 и D 2 задаются уравнениями D 1: y = –9/5, D 2: y = 9/5; уравнения являются уравнениями асимптот (рис. 23).


Заметим, что для сопряженных гипербол общими элементами являются вспомогательный «прямоугольник» и асимптоты.

Пример 4. Написать уравнение гиперболы с полуосями a и b (a > 0, b > 0), если известно, что ее главные оси параллельны координатным осям. Определить основные параметры гиперболы.

Решение. Искомое уравнение можно рассматривать как уравнение гиперболы которое получается в результате параллельного переноса старой системы координат на вектор где (x 0 , y 0) – центр гиперболы в «старой» системе координат. Тогда, используя соотношения между координатами произвольной точки М плоскости в заданной и преобразованной системах

    Гипербола представляет собой плоскую кривую, для каждой точки которой модуль разности расстояний до двух заданных точек (фокусов гиперболы ) является постоянным. Расстояние между фокусами гиперболы называется фокусным расстоянием и обозначается через \(2c\). Середина отрезка, соединяющего фокусы, называется центром . У гиперболы имеются две оси симметрии: фокальная или действительная ось, проходящая через фокусы, и перпендикулярная ей мнимая ось, проходящая через центр. Действительная ось пересекает ветви гиперболы в точках, которые называются вершинами . Отрезок, соединяющий центр гиперболы с вершиной, называется действительной полуосью и обозначается через \(a\). Мнимая полуось обозначается символом \(b\). Каноническое уравнение гиперболы записывается в виде
    \(\large\frac{{{x^2}}}{{{a^2}}}\normalsize - \large\frac{{{y^2}}}{{{b^2}}}\normalsize = 1\).

    Модуль разности расстояний от любой точки гиперболы до ее фокусов является постоянной величиной:
    \(\left| {{r_1} - {r_2}} \right| = 2a\),
    где \({r_1}\), \({r_2}\) − расстояния от произвольной точки \(P\left({x,y} \right)\) гиперболы до фокусов \({F_1}\) и \({F_2}\), \(a\) − действительная полуось гиперболы.

    Уравнения асимптот гиперболы
    \(y = \pm \large\frac{b}{a}\normalsize x\)

    Соотношение между полуосями гиперболы и фокусным расстоянием
    \({c^2} = {a^2} + {b^2}\),
    где \(c\) − половина фокусного расстояния, \(a\) − действительная полуось гиперболы, \(b\) − мнимая полуось.

    Эксцентриситет гиперболы
    \(e = \large\frac{c}{a}\normalsize > 1\)

    Уравнения директрис гиперболы
    Директрисой гиперболы называется прямая, перпендикулярная ее действительной оси и пересекающая ее на расстоянии \(\large\frac{a}{e}\normalsize\) от центра. У гиперболы − две директрисы, отстоящие по разные стороны от центра. Уравнения директрис имеют вид
    \(x = \pm \large\frac{a}{e}\normalsize = \pm \large\frac{{{a^2}}}{c}\normalsize\).

    Уравнение правой ветви гиперболы в параметрической форме
    \(\left\{ \begin{aligned} x &= a \cosh t \\ y &= b \sinh t \end{aligned} \right., \;\;0 \le t \le 2\pi\),
    где \(a\), \(b\) − полуоси гиперболы, \(t\) − параметр.

    Общее уравнение гиперболы
    где \(B^2 - 4AC > 0\).

    Общее уравнение гиперболы, полуоси которой параллельны осям координат
    \(A{x^2} + C{y^2} + Dx + Ey + F = 0\),
    где \(AC

    Равнобочная гипербола
    Гипербола называется равнобочной , если ее полуоси одинаковы: \(a = b\). У такой гиперболы асимптоты взаимно перпендикулярны. Если асимптотами являются горизонтальная и вертикальная координатные оси (соответственно, \(y = 0\) и \(x = 0\)), то уравнение равнобочной гиперболы имеет вид
    \(xy = \large\frac{{{e^2}}}{4}\normalsize\) или \(y = \large\frac{k}{x}\normalsize\), где \(k = \large\frac{e^2}{4}\normalsize .\)

    Параболой называется плоская кривая, в каждой точки которой выполняется следующее свойство: расстояние до заданной точки (фокуса параболы ) равно расстоянию до заданной прямой (директрисы параболы ). Расстояние от фокуса до директрисы называется параметром параболы и обозначается через \(p\). Парабола имеет единственную ось симметрии, которая пересекает параболу в ее вершине . Каноническое уравнение параболы имеет вид
    \(y = 2px\).

    Уравнение директрисы
    \(x = - \large\frac{p}{2}\normalsize\),

    Координаты фокуса
    \(F \left({\large\frac{p}{2}\normalsize, 0} \right)\)

    Координаты вершины
    \(M \left({0,0} \right)\)

    Общее уравнение параболы
    \(A{x^2} + Bxy + C{y^2} + Dx + Ey + F = 0\),
    где \(B^2 - 4AC = 0\).

    Уравнение параболы, ось симметрии которой параллельна оси \(Oy\)
    \(A{x^2} + Dx + Ey + F = 0\;\left({A \ne 0, E \ne 0} \right) \),
    или в эквивалентной форме
    \(y = a{x^2} + bx + c,\;\;p = \large\frac{1}{2a}\normalsize\)

    Уравнение директрисы
    \(y = {y_0} - \large\frac{p}{2}\normalsize\),
    где \(p\) − параметр параболы.

    Координаты фокуса
    \(F\left({{x_0},{y_0} + \large\frac{p}{2}\normalsize} \right)\)

    Координаты вершины
    \({x_0} = - \large\frac{b}{{2a}}\normalsize,\;\;{y_0} = ax_0^2 + b{x_0} + c = \large\frac{{4ac - {b^2}}}{{4a}}\normalsize\)

    Уравнение параболы с вершиной в начале координат и осью симметрии, параллельной оси \(Oy\)
    \(y = a{x^2},\;\;p = \large\frac{1}{{2a}}\normalsize\)

    Уравнение директрисы
    \(y = - \large\frac{p}{2}\normalsize\),
    где \(p\) − параметр параболы.

    Координаты фокуса
    \(F \left({0, \large\frac{p}{2}\normalsize} \right)\)

    Координаты вершины
    \(M \left({0,0} \right)\)

Определение 1

Гипербола в математике – это множество всех точек на плоскости, для любой из которых абсолютная разность расстояния между двумя точками $F_1$ и $F_2$, называемыми фокусами, всегда равна одному и тому же значению и равна $2a$.

Рисунок 1. Как выглядит гипербола: пример гиперболы

Свойства гиперболы

  • Если точки $F_1$ и $F_2$ являются фокусами гиперболы, то касательная, проведённая через любую точку $A$, принадлежащую кривой, является биссектрисой угла $F_1AF_2$;
  • Отношение расстояний от точки на гиперболе до фокуса и от этой же точки до директрисы – это константа, называемая эксцентриситетом $ε$;
  • Гиперболе свойственна зеркальная симметричность относительно действительной и мнимой осей, а также вращательная к центру при повороте на 180°;
  • Ограниченный действительными осями отрезок касательной, проведённой через точку $M$, делится пополам точкой $M$;
  • У каждой гиперболы есть сопряжённая гипербола, которая располагается в незанятых четвертях графика.

Основные определения

  • Ветви гиперболы – это две непересекающиеся кривые;
  • Вершинами гиперболы называются две ближайшие точки на разных ветвях гиперболы;
  • Формула для определения расстояния между вершинами гиперболы выглядит как $2\cdot a$;
  • Большой действительной осью называется прямая, проложенная через две ближайшие точки на гиперболе. На половине этого расстояния расположен центр гиперболы;
  • Полуосями гиперболы называется половина расстояния между вершинами гиперболы, формула для его определения $2\cdot a/2 = a$;
  • Мнимая ось – это прямая, проложенная через центр гиперболы и перпендикулярная действительной оси;
  • Геометрическое построение гиперболы производится по заданным вершинам и фокусам с помощью циркуля.

Уравнение гиперболы

Общая формула гиперболы и функция гиперболы описывается следующим уравнением: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, где $a, b$ - положительные действительные числа.

Уравнение вырожденной гиперболы выглядит как уравнение двух асимтот к гиперболе: $\frac{x}{a} - \frac{y}{b} = 0$

Уравнение гиперболы со смещенным центром $\frac{(x - x_0)^2}{a^2} - \frac{(y - y_0)^2}{b^2} = 1$, где $x_0, y_0$ - координаты центра гиперболы.

Для нахождения уравнения смещенной гиперболы по графику сначала определяют смещение центра относительно оси координат, оно равно координатам центра. Затем по асимтоптам определяют значения $a$ и $b$.

Остальным же читателям предлагаю существенно пополнить свои школьные знания о параболе и гиперболе. Гипербола и парабола – это просто? …Не дождётесь =)

Гипербола и её каноническое уравнение

Общая структура изложения материала будет напоминать предыдущий параграф. Начнём с общего понятия гиперболы и задачи на её построение.

Каноническое уравнение гиперболы имеет вид , где – положительные действительные числа. Обратите внимание, что в отличие от эллипса , здесь не накладывается условие , то есть, значение «а» может быть и меньше значения «бэ».

Надо сказать, довольно неожиданно… уравнение «школьной» гиперболы и близко не напоминает каноническую запись. Но эта загадка нас ещё подождёт, а пока почешем затылок и вспомним, какими характерными особенностями обладает рассматриваемая кривая? Раскинем на экране своего воображения график функции ….

У гиперболы две симметричные ветви.

Неплохой прогресс! Данными свойствами обладает любая гипербола, и сейчас мы с неподдельным восхищением заглянем в декольте этой линии:

Пример 4

Построить гиперболу, заданную уравнением

Решение : на первом шаге приведём данное уравнение к каноническому виду . Пожалуйста, запомните типовой порядок действий. Справа необходимо получить «единицу», поэтому обе части исходного уравнения делим на 20:

Здесь можно сократить обе дроби, но оптимальнее сделать каждую из них трёхэтажной :

И только после этого провести сокращение:

Выделяем квадраты в знаменателях:

Почему преобразования лучше проводить именно так? Ведь дроби левой части можно сразу сократить и получить . Дело в том, что в рассматриваемом примере немного повезло: число 20 делится и на 4 и на 5. В общем случае такой номер не проходит. Рассмотрим, например, уравнение . Здесь с делимостью всё печальнее и без трёхэтажных дробей уже не обойтись:

Итак, воспользуемся плодом наших трудов – каноническим уравнением :

Как построить гиперболу?

Существует два подхода к построению гиперболы – геометрический и алгебраический.
С практической точки зрения вычерчивание с помощью циркуля... я бы даже сказал утопично, поэтому гораздо выгоднее вновь привлечь на помощь нехитрые расчёты.

Целесообразно придерживаться следующего алгоритма, сначала готовый чертёж, потом комментарии:

На практике часто встречается комбинация поворота на произвольный угол и параллельного переноса гиперболы. Данная ситуация рассматривается на уроке Приведение уравнения линии 2-го порядка к каноническому виду .

Парабола и её каноническое уравнение

Свершилось! Она самая. Готовая раскрыть немало тайн. Каноническое уравнение параболы имеет вид , где – действительное число. Нетрудно заметить, что в своём стандартном положении парабола «лежит на боку» и её вершина находится в начале координат. При этом функция задаёт верхнюю ветвь данной линии, а функция – нижнюю ветвь. Очевидно, что парабола симметрична относительно оси . Собственно, чего париться:

Пример 6

Построить параболу

Решение : вершина известна, найдём дополнительные точки. Уравнение определяет верхнюю дугу параболы, уравнение – нижнюю дугу.

В целях сократить запись вычисления проведём «под одной гребёнкой» :

Для компактной записи результаты можно было свести в таблицу.

Перед тем, как выполнить элементарный поточечный чертёж, сформулируем строгое

определение параболы:

Параболой называется множество всех точек плоскости, равноудалённых от данной точки и данной прямой , не проходящей через точку .

Точка называется фокусом параболы, прямая – директрисой (пишется с одной «эс») параболы. Константа «пэ» канонического уравнения называется фокальным параметром , который равен расстоянию от фокуса до директрисы. В данном случае . При этом фокус имеет координаты , а директриса задаётся уравнением .
В нашем примере :

Определение параболы понимается ещё проще, чем определения эллипса и гиперболы. Для любой точки параболы длина отрезка (расстояние от фокуса до точки) равна длине перпендикуляра (расстоянию от точки до директрисы):

Поздравляю! Многие из вас сегодня сделали самое настоящие открытие. Оказывается, гипербола и парабола вовсе не являются графиками «рядовых» функций, а имеют ярко выраженное геометрическое происхождение.

Очевидно, что при увеличении фокального параметра ветви графика будут «раздаваться» вверх и вниз, бесконечно близко приближаясь к оси . При уменьшении же значения «пэ» они начнут сжиматься и вытягиваться вдоль оси

Эксцентриситет любой параболы равен единице:

Поворот и параллельный перенос параболы

Парабола – одна из самых распространённых линий в математике, и строить её придётся действительно часто. Поэтому, пожалуйста, особенно внимательно отнестись к заключительному параграфу урока, где я разберу типовые варианты расположения данной кривой.

! Примечание : как и в случаях с предыдущими кривыми, корректнее говорить о повороте и параллельном переносе координатных осей, но автор ограничится упрощённым вариантом изложения, чтобы у читателя сложились элементарные представления о данных преобразованиях.

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса