Подпишись и читай
самые интересные
статьи первым!

Что такое металл с. Сравнение свойств металлов и неметаллов. II. Реакции металлов с кислотами

Металлы являются наиболее распространенным видом материалов, которыми человек удовлетворяет свои жизненные потребности. Сейчас человечество живет в век металлов и развитие всех отраслей промышленности, наука, культура и быт человека немыслимы без машин, механизмов, приборов и других изделий из металла.

Переход человека от использования камня (каменный век) к металлу был длительным и сложным. Он произошел не в результате революционного скачка в развитии общества, а металлы постепенно входили в обиход человека в течение длительного периода. Первым металлом, вошедшим в повседневный обиход человека, была медь, которая открыла эру металлургии и дала миру первый сплав – бронзу. По археологическим данным первые сведения о плавках меди относятся к 6500–5700 гг. до н.э. Она была основой материальной культуры в течение тысячелетий, и медный век постепенно перешел к бронзовому веку.

Следующим этапом в металлургии стало применение железа (железный век) и его начало относят ко второму тысячелетию до н.э. Получение чистого железа и его сплавов стало возможным благодаря накопленному опыту по выплавке меди, бронзы, золота и других легкоплавких металлов и сплавов. Освоение производства железа послужила мощным толчком к развитию производительных сил и технического прогресса. В древности человеку были известны восемь металлов – медь, золото, серебро, олово, свинец, железо, ртуть и сурьма. К концу XVIII в. их число увеличилось до 20, а в настоящее время производится и используется около 80 металлов.

Распространенность элементов в земной коре различна – от нескольких процентов до миллионных долей. Суммарное содержание десяти наиболее распространенных элементов (кислород – 47,00; кремний – 29,50; алюминий – 8,05; железо – 4,65, кальций – 2,96; натрий – 2,50; калий – 2,50; магний – 1,87; титан – 0,45; водород – 0,15) составляет 99,63 % массы земной коры, а на все остальные элементы приходится только 0,37 % общей массы земли. Представление о распространенности в земной коре некоторых хорошо известных металлов дают значения их кларков, т.е. среднеарифметическое содержание в земной коре, которые приведены ниже (%):

Наиболее редко в природе встречаются полоний и актиний, кларк которых близок к 10 –15 %.

Техническое значение металла определяется его распространенностью в природе, потребностями в народном хозяйстве и производственными возможностями получения. Два последних фактора определяют масштабы производства отдельных видов металла. В производстве металлов около 95 % выпускаемой продукции (около 800 млн. т.) составляют чугун и сталь, которые представляют собой сплавы железа с углеродом и другими легирующими компонентами. Ежегодный выпуск основных цветных металлов находится на уровне (млн. т.): алюминий 23–24; медь 10–11; никель 0,5–0,7; свинец 4–5; цинк 5–6; магний 0,2–0,3; олово 0,20–0,25; молибден 0,14–0,15; титана около 0,1.

Производством металлов из руд и других видов металлосодержащего сырья занимается металлургия – крупнейшая отрасль тяжелой индустрии. Металлургия является центральным звеном горнометаллургического производства, включающего геологию, горное дело, обогащение, собственно металлургию, литейное производство и обработку металлов различными приемами (давлением, температурой, механическими методами и т.д.). В основе металлургии лежат принципы химических технологий, так как при осуществлении металлургических процессов перерабатываемые материалы претерпевают различные физико-химические превращения. Поэтому металлургия тесно связана с физикой, химией и особенно с физической химией, которая является научной основой теоретической и практической металлургии. В последние годы возрастает связь металлургии с математикой и компьютерной техникой.

Металлургическая промышленность России в настоящее время производит 78 элементов Периодической системы Д.И. Менделеева, а также различные виды удобрений, строительных материалов, серной кислоты и серы, цемента и многих других видов продукции. Металлургия России является высокоразвитой отраслью материального производства. Особое значение для развития горнозаводского дела в России имели труды M.B. Ломоносова, Д.И. Менделеева, а также крупных специалистов по производству черных металлов П.П. Аносова, Д.К. Чернова, Н.Н. Бекетова, И.П. Бардина и многих других. Неоценимый вклад в развитие отечественной цветной металлургии внесли А.А. Байков, НС. Курнаков, П.П. Федотьев, В.А. Ванюков, АИ. Беляев, И Ф. Худяков, АН Вольский и другие.

Металлы, их свойства и классификация

Большинство металлов обладает рядом свойств, имеющих общий характер и отличающихся от свойств других простых или сложных соединений. Такими свойствами являются сравнительно высокие температуры плавления большинства металлов, способность к отражению света, высокая теплопроводность и электропроводность, способностью к прокатыванию. Эти особенности объясняются существованием в металлах особого вида связи – металлической.

В соответствии с положением в периодической системе атомы металлов имеют небольшое число валентных электронов и много незаполненных орбит. Кроме того, валентные электроны достаточно слабо связаны со своими ядрами и поэтому обладают большой свободой перемещения в кристаллической решетке металла. общая картина металлического состояния может быть представлена в следующем виде. Узлы кристаллической решетки металла заняты как отдельными атомами, так и ионами, между которыми сравнительно свободно перемещаются электроны, называемые иногда электронным газом (рис.1).

Рис. 1. Схема размещения атомов, ионов и электронов в кристаллических решетках металлов: 1 – атомы; 2 – ионы; 3 – электроны

Поскольку валентные электроны распределены в кристалле металла почти равномерно, невозможно говорить о какой-либо направленности металлических связей. В этом состоит их важное отличие от ковалентных связей, которые имеют строгую направленность в пространстве. Металлическая связь отличается от ковалентной также и своей прочностью: ее энергия в 3–4 раза меньше энергии ковалентной связи. Существование подвижных электронов в кристалле металлов объясняет их характерные особенности (электропроводность, теплопроводность).

Металлическую связь можно определить как разновидность ненаправленной ковалентной химической связи, когда атомы имеют мало валентных электронов, много свободных орбит, а валентные электроны слабо удерживаются ядром

Таким образом, металлы – химические элементы, кристаллические решетки которых состоят из атомов и ионов, а в пространстве между ядрами свободно перемещаются электроны. Связь между атомами ковалентная, между ионами и электронами – металлическая.

Атомы постоянно теряют электроны, превращаясь в ионы, а последние принимают их, становясь атомами. Количество электронов, беспорядочно блуждающих в кристаллической решетке, подобно молекулам газа, у разных металлов различно, оно определяет долю металлической связи и меру металличности элемента.

Представление о кристаллической решетке – «погруженной в облако свободно блуждающих электронов», – впервые высказанное в 1902 г., теперь дополнено и приобрело несколько измененную трактовку; однако оно и в первоначальном упрощенном виде хорошо объясняет высокую электропроводность, теплопроводность и термоэлектронную эмиссию металлов.

На атомы и ионы в узлах кристаллической решетки действуют силы взаимного притяжения и отталкивания. Амплитуды колебания ионов и атомов зависят от температуры и возрастают с ней. При температуре плавления амплитуды колебаний столь велики, что решетка разрушается: атомы и ионы теряют свои постоянные места и переходят в беспорядочное движение, свойственное жидкому состоянию. Связь между ионами и электронами называют металлической, а между атомами – ковалентной. От соотношения этих видов химической связи зависит количество блуждающих электронов. Чем больше это количество, тем ярче выражены металлические свойства элементов.

Прочностью металлической связи объясняются многие физические и механические свойства металлов.

Внешние механические воздействия на металл вызывают сдвиг слоев кристаллической решетки, однако связь между ионами и электронами при этом не нарушается из-за свободной подвижности электронов. По этой причине металлы прочны и пластичны, они изменяют форму, но не теряют прочности. В меди и золоте много свободных электронов, металлическая связь значительно преобладает над ковалентной – эти металлы пластичны, ковки, вязки. У сурьмы и висмута свободных электронов сравнительно мало, поэтому они хрупки.

Некоторые физические и механические свойства наиболее распространенных цветных металлов приведены (таб.1).


Таблица 1

Электропроводность, обусловленная перемещением в пространстве кристаллической решетки «обобществленных» электронов, очевидно, зависит от свободы их передвижения – правильности расположения атомов, амплитуды и частоты их теплового колебания. Действительно, с повышением температуры размах колебания узлов решетки увеличивается, рассеивание электронов усиливается, и электропроводность снижается; с охлаждением она снова возрастает. При температурах, близких к абсолютному нулю, электрическое сопротивление некоторых металлов и сплавов становится исчезающе малым. Необходимость очень низких температур пока затрудняет практическое использование этого ценного и интересного явления. Сверхпроводимость при минус 253 °С, обнаруженная в середине XX века у сплава ниобия, алюминия и германия, – редкое явление. Другой такой «высокотемпературный» сверхпроводник представляет собой сплав из ниобия и галлия.

Присутствие даже малых примесей других элементов понижает электропроводность: нарушая порядок в решетке, они рассеивают электроны. Также рассеивают электроны атомы, перемещенные в результате внешнего механического воздействия, – деформации ковкой, прокаткой или иной подобной обработкой.

Теплопроводность почти всегда изменяется с температурой подобно электропроводности – наиболее электропроводные металлы хорошо проводят тепло, а имеющие сравнительно высокое электрическое сопротивление – хуже. Теплопроводность связана как с колебаниями атомов в решетке, так и с движением свободных электронов. Последнее, по-видимому, имеет преобладающее значение.

Механические свойства – прочность на разрыв, сжатие, изгиб, твердость и пластичность объясняются не только металлической связью, но и особенностями кристаллической структуры металлов, имеющей в большинстве плотноупакованные пространственные решетки с высоким координатным числом. Наиболее типичные из них показаны (рис. 2), который надо понимать только как схему расположения атомных центров. В действительности, атомы, условно представляемые в виде шаров, плотно упакованы и занимают только 70 % объема (см. рис.2 г, 1).


Рис. 2. Типичные кристаллические решетки металлов и дефекты структуры:
а – кубическая гранецентрированная решетка меди (аналогичны Аи, Ag, Al, Pt и др.); б – кубическая объемно-центрированная решетка вольфрама (аналогичны Fe, К. Ва и др.); в – гексагональная плотная решетка магния (аналогичны Zn, Be и др.); г – дефекты структуры: 1 – вакансии; 2 – междоузлия, включающие примесь

Многие металлы взаимно растворимы в жидком или твердом состояниях, либо образуют между собой химические – интерметаллические соединения, вследствие этого возникают иные кристаллические системы и широко изменяются свойства. Речь идет о сплавах, которые открывают простор получению новых ценных материалов с особыми свойствами. Уже применяют тысячи двойных, тройных и более сложных сплавов, которые получают не только смешиванием жидких металлов, но и спеканием порошков или растворением какого-либо элемента в поверхностном слое твердого металла (сплава).

Способность к упругим и пластическим деформациям, высокие электропроводность и теплопроводность, и некоторые другие особенности составляют комплекс свойств, не присущий иным твердым телам – дереву, камню, пластмассам. Этим и объясняется неоспоримое признание металлов и сплавов важнейшими материалами современной техники.

М. В. Ломоносов определял металлы как «…светлые тела, которые ковать можно». В наши дни, помимо дополнения этого признаками высокой электропроводности и теплопроводности, надо отметить и зависимость многих свойств от чистоты и механической обработки. Один и тот же металл может быть и ковким и хрупким. В реальных кристаллах всегда есть различные дефекты, из-за которых механические и другие физические свойства нельзя отнести только к особенностям металлической связи и кристаллической решетки.

Точечные дефекты – незаполненные узлы решетки, вакансии (см. рис. 2), а также узлы, занятые атомами примесей, возникают при кристаллизации из расплава. Линейные и плоские дефекты – дислокации получаются также при кристаллизации либо в результате механической обработки в виде неполных слоев атомов или их взаимного смещения, а иногда и переплетения.

Общее количество дефектов на 1 см 2 площади металла или сплава часто превышает 10 6 . Точечные дефекты снижают преимущественно электропроводность и теплопроводность, а другие – еще и механические свойства.

Обычные металлы и сплавы поликристалличны, они состоят из произвольно ориентированных совокупностей зерен. в каждом зерне элементарные кристаллы имеют одинаковую ориентацию, а в соседних – отличную, иногда расположенную под большими углами (рис. 3). На границах зерен скапливаются примеси и образуются газовые пустоты. Помимо понижения физических свойств, здесь наблюдается и меньшая коррозионная стойкость.


Рис. 3. Границы зерен металла, расположенные под большими углами

Возможность смещения слоев кристаллов по направлениям дислокаций или разрыв их на границах зерен понижают прочность. Прочность в известной мере возрастает после отжига – нагревания и медленного охлаждения, когда в результате диффузии дислокации частично устраняются, а зерна становятся мельче.

Механическая обработка иногда вызывает упрочнение, связанное с переплетением дислокаций. Другая причина существенного упрочнения, сопровождающегося понижением пластичности и появлением хрупкости, связана с возникновением или введением посторонних нерастворимых фаз, например, карбида железа F 3 C в стали или окислов и нитридов в титане, вольфраме, молибдене. Зерна этих соединений препятствуют взаимному смещению слоев металла. Очистка металлов от примесей обычно значительно улучшает ковкость и облегчает обработку.

Жидкие металлы отличаются от твердых металлов сравнительно малой связью между атомами и ионами, но свобода движения электронов и здесь сохранена, поэтому они также электропроводны и теплопроводны.

Один и тот же металл при разных температурах может иметь разные кристаллические решетки. Переход из одной системы в другую изменяет расстояние между узлами и их расположение, этот переход существенно отражается на свойствах полиморфных модификаций. Например, олово, известное при обычных температурах как пластичный блестящий металл тетрагональной сингонии с плотностью 7,29 г/см 3 (β – модификация), при температурах ниже 13,2 °С, а особенно при быстром переохлаждении превращается в серый порошок, кристаллизуясь в кубической системе с плотностью 5,85 г/см 3 (α – модификация). Подобные превращения свойственны многим другим элементам.

Химическую активность металлов можно характеризовать положением в электрохимическом ряду напряжений, где металлы размещены в порядке нарастания нормальных электрохимических или электродных потенциалов. Чем больше алгебраическая величина нормального электродного потенциала, тем меньше восстановительная способность и химическая активность металла. В ряду напряжений каждый металл способен вытеснять стоящие правее него металлы из водных растворов и солевых расплавов.

Металлы с отрицательными электрохимическими потенциалами легко подвержены окислению, поэтому они встречаются в природе только в виде химических соединений: оксидов, галогенидов, а также сульфидов, силикатов и других солей. По мере повышения потенциала, а значит и снижения химической активности, свободное состояние металлов становится все более устойчивым. Например, медь, серебро и ртуть находятся в природе не только в виде солей, но и в свободном состоянии, а золото и платина – преимущественно в свободном состоянии. Связь между электродными потенциалами и некоторыми свойствами металлов показана (табл. 2).


Характеризуя металлы как химические элементы надо заметить, что Периодическая система Д. И. Менделеева не позволяет четко различить их от металлоидов и неметаллов. Это и естественно: каждый элемент представляет собой диаэлектрическое единство металлических и металлоидных свойств, противоречивая природа которых не устраняется с ростом заряда ядра и количества электронных оболочек.

Явными неметаллами легко признать водород, благородные газы, галогены, элементы группы VI – кислород, серу, селен, теллур и полоний, а также бор, углерод, азот, кремний и фосфор. Все они не дают основных оксидов и гидрооксидов, свойственных металлам. Вместе с тем из числа прочих элементов некоторые имеют амфотерные гидрооксиды. В частности, у таких, казалось бы, явных металлов, как цинк и алюминий, оксиды проявляют и кислотные и основные свойства.

О кристаллических решетках металлов в общем случае говорилось выше, а для большинства химических элементов они условно показаны в табл. 4. Однако различие кристаллических структур также не дает оснований для интересующего нас подразделения элементов. Привычно считаемые металлами ртуть, и висмут кристаллизуются в несвойственной большинству других металлов ромбической системе, а индий и олово – в тетрагональной.

Наиболее четкую условную границу между металлами и металлоидами можно провести, сравнивая электропроводность или обратную ей величину – удельное электрическое сопротивление. Для явного металла – никеля удельное электрическое сопротивление равно 6,8∙10 –6 (Ом∙см), а для металлоида углерода только в модификации графита составляет 1375∙10 –6 (Ом∙см).

Ориентируясь по этому признаку, к металлам следует отнести 80 элементов, а к неметаллам и металлоидам 23.

Далее, ограничивая область металлургии элементами, входящими в состав земной коры, из восьмидесяти следует исключить франций, технеций, прометий, а также актиниды, начиная с америция, и определить окончательное число металлов, равным 68 (таб. 3).

Таблица 3

в связи со стремлением к комплексности использования сырья, а также широким производством сплавов, часто включающих металлоиды, сложились традиции, по которым к металлам иногда неправильно относят кремний, германий, а иногда также селен и теллур, попутно извлекаемые из металлургического сырья. Наряду с этим типичный металл – натрий получает химическая промышленность; из этого видна тесная связь химии с металлургией. Раньше металлургию отличало от химической технологии преимущественное применение плавок при высоких температурах, теперь эта особенность все более утрачивается: наряду с огневой пирометаллургией возрастает значение гидрометаллургии, которая извлекает металлы из руд выщелачиванием водными растворами реагентов с последующим восстановлением электролизом либо цементацией.

В качестве промежуточных переделов для разделения и концентрирования растворенных веществ пользуются сорбцией, экстракцией, осаждением, соосаждением и другими способами химической переработки.

Промышленная классификация металлов, традиционно сложившаяся в нашей стране в период наиболее интенсивной индустриализации, не имеет четкой научной основы, но широко применяется в технической литературе и обиходе. Первое основание ее, принятое и в некоторых других странах, состоит в резком различии масштабов производства железа и прочих металлов. В общей массе металлургической продукции, сплавы железа занимают около 93%. Поэтому различают «железные металлы» (железо и его сплавы – чугуны и стали) и прочие «нежелезные».

У нас этому соответствуют условно принятые названия черные и цветные металлы. Цветные металлы в свою очередь подразделяются по некоторым общим признакам на ряд групп и подгрупп, отмеченных в табл.3 и 4.

В вышеприведенной классификации нет даже принципа названий групп. Так, в конце прошлого столетия алюминий считали редким металлом, а сейчас по производству и потреблению он занимает первое место среди цветных металлов. Не решен окончательно вопрос и с титаном, так как некоторые металлурги относят его к тугоплавким редким металлам, а другие к легким металлам. Поэтому различные металлурги, придерживаясь разных точек зрения, относят отдельные металлы к разным группам.

Подавляющее большинство (93 из 117) известных в настоящее время химических элементов относится к металлам.
Атомы различных металлов имеют много общего в строении, а образуемые ими простые и сложные вещества имеют схожие свойства (физические и химические).

Положение в периодической системе и строение атомов металлов.

В периодической системе металлы располагаются левее и ниже условной ломаной линии, проходящей от бора к астату (см. таблицу ниже). К металлам относятся почти все s-элементы (за исключением Н, Не), примерно половина р -элементов, все d — и f -элементы (лантаниды и актиниды ).

У большинства атомов металлов на внешнем энергетическом уровне содержится небольшое число (до 3) электронов, только у некоторых атомов р-элементов (Sn, Pb, Bi, Ро) их больше (от четырех до шести). Валентные электроны атомов металлов слабо (по сравнению с атомами неметаллов) связаны с ядром. Поэтому атомы металлов относительно легко отдают эти электроны другим атомам, выступая в химических реакциях только в качестве восстановителей и превращаясь при этом в положительно заряженные катионы:

Me - пе – = Ме n+ .

В отличие от неметаллов для атомов металлов характерны только положительные степени окисления от +1 до +8.

Легкость, с которой атомы металла отдают свои валентные электроны другим атомам, характеризует восстановительную активность данного металла. Чем легче атом металла отдает свои электроны, тем он более сильный восстановитель. Если расположить в ряд металлы в порядке уменьшения их восстановительной способности в водных растворах, мы получим известный нам вытеснительный ряд металлов , который называется также электрохимическим рядом напряжений (или рядом активности ) металлов (см. таблицу ниже).

Распространенность м еталлов в природе .

В первую тройку наиболее распространенных в земной коре (это поверхностный слой нашей планеты толщиной примерно 16 км) металлов входят алюминий, железо и кальций. Менее распространены натрий, калий, магний. В таблице ниже приведены массовые доли некоторых металлов в земной коре.

железо и кальций. Менее распространены натрий, калий, магний. В таблице ниже приведены массовые доли некоторых металлов в земной коре.

Распространенность металлов в земной коре

Металл Металл Массовая доля в земной коре, %
Al 8,8 Cr 8,3 ∙ 10 -3
Fe 4,65 Zn 8,3 ∙ 10 -3
Ca 3,38 Ni 8 ∙ 10 -3
Na 2,65 Cu 4,7 ∙ 10 -3
K 2,41 Pb 1,6 ∙ 10 -3
Mg 2,35 Ag 7 ∙ 10 -6
Ti 0,57 Hg 1,35 ∙ 10 -6
Mn 0,10 Au 5 ∙ 10 -8

Элементы, массовая доля которых в земной коре составляет менее 0,01 %, называются редкими . К числу редких металлов относятся, например, все лантаниды. Если элемент не способен концентрироваться в земной коре, т. е. не образует собственных руд, а встречается в качестве примеси с другими элементами, то его относят к рассеянным элементам. Рассеянными, например, являются следующие металлы: Sc, Ga, In, Tl, Hf.

В 40-х годах XX в. немецкие ученые Вальтер и Ида Нолла к высказали мысль о том. что в каждом булыжнике на мостовой присутствуют все химические элементы периодической системы. Вначале эти слова были встречены их коллегами далеко не с единодушным одобрением. Однако по мере появления все более точных методов анализа ученые все больше убеждаются в справедливости этих слов.

Поскольку все живые организмы находятся в тесном контакте с окружающей средой, то и в каждом из них должны содержаться если не все, то большая часть химических элементов периодической системы. Например, в организме взрослого человека массовая доля неорганических веществ составляет 6 %. Из металлов в этих соединениях присутствуют Mg, Са, Na, К. В составе многих ферментов и иных биологически активных органических соединений в нашем организме содержатся V, Mn, Fe, Cu, Zn, Co, Ni, Mo, Сг и некоторые другие металлы.

В организме взрослого человека содержится в среднем около 140 г ионов калия и около 100 г ионов натрия. С пищей мы ежедневно потребляем от 1,5 г до 7 г ионов калия и от 2 г до 15 г ионов натрия. Потребность в ионах натрия настолько велика, что их необходимо специально добавлять в пищу. Значительная потеря ионов натрия (в виде NaCl с мочой и потом) неблагоприятно сказывается на здоровье человека. Поэтому в жаркую погоду врачи рекомендуют пить минеральную воду. Однако и избыточное содержание соли в пище негативно сказывается на работе наших внутренних органов (в первую очередь, сердца и почек).

Вам необходимо включить JavaScript, чтобы проголосовать

Нахождение в природе

Бо́льшая часть металлов присутствует в природе в виде руд и соединений. Они образуют оксиды , сульфиды , карбонаты и другие химические соединения. Для получения чистых металлов и дальнейшего их применения необходимо выделить их из руд и провести очистку. При необходимости проводят легирование и другую обработку металлов. Изучением этого занимается наука металлургия . Металлургия различает руды чёрных металлов (на основе железа) и цветных (в их состав не входит железо, всего около 70 элементов). Золото, серебро и платина относятся также к драгоценным (благородным) металлам . Кроме того, в малых количествах они присутствуют в морской воде, растениях, живых организмах (играя при этом важную роль).

Известно, что организм человека на 3 % состоит из металлов . Больше всего в наших клетках кальция и натрия , сконцентрированного в лимфатических системах . Магний накапливается в мышцах и нервной системе , медь - в печени , железо - в крови .

Добыча

Металлы часто извлекают из земли средствами горной промышленности, результат - добытые руды - служат относительно богатым источником необходимых элементов. Для выяснения нахождения руд используются специальные поисковые методы, включающие разведку руд и исследование месторождений. Месторождения, как правило, делятся на карьеры (разработки руд на поверхности), в которых добыча ведётся путем извлечения грунта с использованием тяжелой техники, а также - на подземные шахты .

Из добытой руды металлы извлекаются, как правило, с помощью химического или электролитического восстановления. В пирометаллургии для преобразования руды в металлическое сырьё используются высокие температуры, в гидрометаллургии применяют для тех же целей водную химию. Используемые методы зависят от вида металла и типа загрязнения.

Когда металлическая руда является ионным соединением металла и неметалла, для извлечения чистого металла она обычно подвергается выплавлению - нагреву с восстановителем. Многие распространенные металлы, такие как железо , плавят с использованием в качестве восстановителя углерода (получаемого из сжигания угля). Некоторые металлы, такие как алюминий и натрий , не имеют ни одного экономически оправданного восстановителя и извлекаются с применением электролиза .

Твёрдость некоторых металлов по шкале Мооса:

Твёрдость Металл
0.2 Цезий
0.3 Рубидий
0.4 Калий
0.5 Натрий
0.6 Литий
1.2 Индий
1.2 Таллий
1.25 Барий
1.5 Стронций
1.5 Галлий
1.5 Олово
1.5 Свинец
1.5
1.75 Кальций
2.0 Кадмий
2.25 Висмут
2.5 Магний
2.5 Цинк
2.5 Лантан
2.5 Серебро
2.5 Золото
2.59 Иттрий
2.75 Алюминий
3.0 Медь
3.0 Сурьма
3.0 Торий
3.17 Скандий
3.5 Платина
3.75 Кобальт
3.75 Палладий
3.75 Цирконий
4.0 Железо
4.0 Никель
4.0 Гафний
4.0 Марганец
4.5 Ванадий
4.5 Молибден
4.5 Родий
4.5 Титан
4.75 Ниобий
5.0 Иридий
5.0 Рутений
5.0 Тантал
5.0 Технеций
5.0 Хром
5.5 Бериллий
5.5 Осмий
5.5 Рений
6.0 Вольфрам
6.0 β-Уран

Из-за лёгкой отдачи электронов возможно окисление металлов, что может приводить к коррозии и дальнейшей деградации свойств. Способность к окислению можно узнать по стандартному ряду активности металлов. Этот факт подтверждает необходимость использования металлов в комбинации с другими элементами (сплав , важнейшим из которых является сталь), их легирование и применение различных покрытий.

Для более корректного описания электронных свойств металлов необходимо использовать квантовую механику . Во всех твёрдых телах с достаточной симметрией уровни энергии электронов отдельных атомов перекрываются и образуют разрешённые зоны, причём зона, образованная валентными электронами, называется валентной зоной . Слабая связь валентных электронов в металлах приводит к тому, что валентная зона в металлах получается очень широкой, и всех валентных электронов не хватает для её полного заполнения.

Принципиальная особенность такой частично заполненной зоны состоит в том, что даже при минимальном приложенном напряжении в образце начинается перестройка валентных электронов, т. е. течёт электрический ток .

Та же высокая подвижность электронов приводит и к высокой теплопроводности, а также к способности зеркально отражать электромагнитное излучение (что и придаёт металлам характерный блеск).

Некоторые металлы

  1. Лёгкие:
  2. Другие:

Применение металлов

Конструкционные материалы

Инструментальные материалы

История развития представлений о металлах

Знакомство человека с металлами началось с золота , серебра и меди , то есть с металлов, встречающихся в свободном состоянии на земной поверхности; впоследствии к ним присоединились металлы, значительно распространенные в природе и легко выделяемые из их соединений: олово , свинец , железо и . Эти семь металлов были знакомы человечеству в глубокой древности. Среди древнеегипетских артефактов встречаются золотые и медные изделия, которые, по некоторым данным, относятся к эпохе, удаленной на 3000-4000 лет от н. э.

К семи известным металлам уже только в средние века прибавились цинк , висмут , сурьма и в начале XVIII столетия мышьяк . С середины XVIII века число открытых металлов быстро возрастает и к началу XX столетия доходит до 65, а к началу XXI века - до 96.

Ни одно из химических производств не способствовало столько развитию химических знаний, как процессы, связанные с получением и обработкой металлов; с историей их связаны важнейшие моменты истории химии. Свойства металлов так характерны, что уже в самую раннюю эпоху золото, серебро, медь, свинец, олово, железо и ртуть составляли одну естественную группу однородных веществ, и понятие о «металле» относится к древнейшим химическим понятиям. Однако воззрения на их натуру в более или менее определенной форме появляются только в средние века у алхимиков . Правда, идеи Аристотеля о природе: образовании всего существующего из четырёх элементов (огня, земли, воды и воздуха) уже тем самым указывали на сложность металлов; но эти идеи были слишком туманны и абстрактны. У алхимиков понятие о сложности металлов и, как результат этого, вера в возможность превращать одни металлы в другие, создавать их искусственно, является основным понятием их миросозерцания. Это понятие есть естественный вывод из той массы фактов, относящихся до химических превращений металлов, которые накопились к тому времени. В самом деле, превращение металла в совершенно непохожую на них окись простым прокаливанием на воздухе и обратное получение металла из окиси, выделение одних металлов из других, образование сплавов, обладающих другими свойствами, чем первоначально взятые металлы, и прочее - всё это как будто должно было указывать на сложность их натуры.

Что касается собственно до превращения металлов в золото, то вера в возможность этого была основана на многих видимых фактах. В первое время образование сплавов, цветом похожих на золото, например из меди и цинка, в глазах алхимиков уже было превращением их в золото. Им казалось, что нужно изменить только цвет, и свойства металла также станут другими. В особенности много способствовали этой вере плохо поставленные опыты, когда для превращения неблагородного металла в золото брались вещества, содержавшие примесь этого золота. Например, уже в конце XVIII столетия один копенгагенский аптекарь уверял, что химически чистое серебро при сплавлении с мышьяком отчасти превращается в золото. Этот факт был подтвержден известным химиком Гитоном де Морво и наделал много шума. Вскорости потом было показано, что мышьяк, служивший для опыта, содержал следы серебра с золотом.

Так как из семи известных тогда металлов одни легче подвергались химическим превращениям, другие труднее, то алхимики делили их на благородные - совершенные, и неблагородные - несовершенные. К первым принадлежали золото и серебро, ко вторым медь, олово, свинец, железо и ртуть. Последняя, обладая свойствами благородных металлов, но в то же время резко отличаясь от всех металлов своим жидким состоянием и летучестью, чрезвычайно занимала тогдашних ученых, и некоторые выделяли её в особую группу; внимание, привлекавшееся ей, было так велико, что ртуть стали считать в числе элементов, из которых образованы собственно металлы, и в ней именно видели носителя металлических свойств. Принимая существование в природе перехода одних металлов в другие, несовершенных в совершенные, алхимики предполагали, что в обычных условиях это превращение идет чрезвычайно медленно, целыми веками, и, может быть, не без таинственного участия небесных светил, которым в тогдашнее время приписывали такую большую роль и в судьбе человека. По совпадению, известных тогда металлов было семь, как и известных тогда планет, а это ещё более указывало на таинственную связь между ними. У алхимиков металлы часто носят название планет; золото называется Солнцем , серебро - Луной , медь - Венерой , олово - Юпитером , свинец - Сатурном , железо - Марсом и ртуть - Меркурием . Когда были открыты цинк, висмут, сурьма и мышьяк, тела, во всех отношениях схожие с металлами, но у которых одно из характернейших свойств металла, ковкость, развито в слабой степени, то они были выделены в особую группу - полуметаллов . Деление металлов на собственно металлы и полуметаллы существовало ещё в середине XVIII столетия.

Определение состава металла первоначально было чисто умозрительным. В первое время алхимики принимали, что они образованы из двух элементов - и серы . Происхождение этого воззрения неизвестно, оно имеется уже в VIII столетии. По Геберу доказательством присутствия ртути в металлах служит то, что она их растворяет, и в этих растворах индивидуальность их исчезает, поглощается ртутью, чего не случилось бы, если бы в них не было одного общего с ртутью начала. Кроме того, ртуть со свинцом давала нечто похожее на олово. Что касается серы, то, может быть, она взята потому, что были известны сернистые соединения, по внешнему виду схожие с металлами. В дальнейшем эти простые представления, вероятно, вследствие безуспешных попыток получения металлов искусственно, крайне усложняются, запутываются. В понятиях алхимиков, например Х-XIII столетий, ртуть и сера, из которых образованы металлы, не были теми ртутью и серой, которые имели в руках алхимики. Это было только нечто схожее с ними, обладающее особыми свойствами; нечто такое, которое в обыкновенной сере и ртути существовало реально, было выражено в них в большей степени, чем в других телах. Под ртутью, входящей в состав металлов, представляли нечто, обуславливающее неизменяемость их, металлический блеск, тягучесть, одним словом, носителя металлического вида; под серой подразумевали носителя изменяемости, разлагаемости, горючести металлов. Эти два элемента находились в металлах в различном соотношении и, как тогда говорили, различным образом фиксированные; кроме того, они могли быть различной степени чистоты. По Геберу, например, золото состояло из большого количества ртути и небольшого количества серы в высшей степени чистоты и наиболее фиксированных; в олове, напротив, предполагали много серы и мало ртути, которые были не чисты, плохо фиксированы и прочее. Всем этим, конечно, хотели выразить различное отношение металлов к единственному в тогдашнее время могущественному химическому агенту - огню. При дальнейшем развитии этих воззрений двух элементов - ртути и серы - для объяснения состава металлов алхимикам показалось недостаточно; к ним присоединили соль, а некоторые мышьяк. Этим хотели указать, что при всех превращениях металлов остается нечто не летучее, постоянное. Если в природе «превращение неблагородных металлов в благородные совершается веками», то алхимики стремились создать такие условия, в которых этот процесс совершенствования, созревания шёл бы скоро и легко. Вследствие тесной связи химии с тогдашней медициной и тогдашней биологией, идея о превращении металлов естественным образом отождествлялась с идеей о росте и развитии организованных тел: переход, например, свинца в золото, образование растения из зерна, брошенного в землю и как бы разложившегося, брожение, исцеление больного органа у человека - все это были частные явления одного общего таинственного жизненного процесса, совершенствования, и вызывались одними стимулами. Отсюда само собой понятно, что таинственное начало, дающее возможность получить золото, должно было исцелять болезни, превращать старое человеческое тело в молодое и прочее. Так сложилось понятие о чудесном философском камне.

Что касается роли философского камня в превращении неблагородных металлов в благородные, то больше всего существует указаний относительно перехода их в золото, о получении серебра говорится мало. По одним авторам, один и тот же философский камень превращает металлы в серебро и золото; по другим - существуют два рода этого вещества: одно совершенное, другое менее совершенное, и это то последнее и служит для получения серебра. Относительно количества философского камня, требующегося для превращения, указания тоже разные. По одним, 1 часть его способна превратить в золото 10000000 частей металла, по другим - 100 частей и даже только 2 части. Для получения золота плавили какой-нибудь неблагородный металл или брали ртуть и бросали туда философский камень; одни уверяли, что превращение происходит мгновенно, другие же - мало-помалу. Эти взгляды на природу металлов и на способность их к превращениям держатся в общем в течение многих веков до XVII столетия, когда начинают резко отрицать все это, тем более что эти взгляды вызвали появление многих шарлатанов, эксплуатировавших надежду легковерных получить золото. С идеями алхимиков в особенности боролся Бойль : «Я бы хотел знать, - говорит он в одном месте, - как можно разложить золото на ртуть, серу и соль; я готов уплатить издержки по этому опыту; что касается меня, то я никогда не мог этого достигнуть».

После вековых бесплодных попыток искусственного получения металлов и при том количестве фактов, которые накопились к XVII столетию, например о роли воздуха при горении, увеличении веса металла при окислении, что, впрочем, знал ещё Гебер в VIII столетии, вопрос об элементарности состава металла, казалось, был совсем близок к окончанию; но в химии появилось новое течение, результатом которого явилась флогистонная теория, и решение этого вопроса было ещё отсрочено на продолжительное время.

Тогдашних ученых сильно занимали явления горения. Исходя из основной идеи тогдашней философии, что сходство в свойствах тел должно происходить от одинаковости начал, элементов, входящих в их состав, принимали, что тела горючие заключают общий элемент. Акт горения считался актом разложения, распадения на элементы; при этом элемент горючести выделялся в виде пламени, а другие оставались. Признавая взгляд алхимиков на образование металлов из трёх элементов, ртути, серы и соли, и принимая их реальное существование в металле, горючим началом в них нужно было признать серу. Тогда другой составной частью металла нужно было, очевидно, признать остаток от прокаливания металла - «землю», как тогда говорили; следовательно, ртуть тут ни при чём. С другой стороны, сера сгорает в серную кислоту , которую многие, в силу сказанного, считали более простым телом, чем сера, и включили в число элементарных тел. Выходила путаница и противоречие. Бехер , чтобы согласовать старые понятия с новыми, принимал существование в металле земли трех сортов: собственно «землю», «землю горючую» и «землю ртутную». В этих-то условиях Шталь предложил свою теорию. По его мнению, началом горючести служит не сера и не какое-либо другое известное вещество, а нечто неизвестное, названное им флогистоном . Металлы, будто бы, образованы из флогистона и земли; прокаливание металла на воздухе сопровождается выделением флогистона; обратное получение металлов из его земли с помощью угля - вещества, богатого флогистоном - есть акт соединения флогистона с землей. Хотя металлов было несколько и каждый из них при прокаливании давал свою землю, последняя, как элемент, была одна, так что и эта составная часть металла была такого же гипотетического характера, как и флогистон; впрочем, последователи Шталя иногда принимали столько «элементарных земель», сколько было металлов. Когда Кавендиш при растворении металлов в кислотах получил водород и исследовал его свойства (неспособность поддерживать горение, его взрывчатость в смеси с воздухом и проч.), он признал в нём флогистон Шталя; металлы, по его понятиям, состоят из водорода и «земли». Этот взгляд принимался многими последователями флогистонной теории.

Несмотря на видимую стройность теории флогистона, существовали крупные факты, которые никак нельзя было связать с ней. Ещё Геберу было известно, что металлы при обжигании увеличиваются в весе; между тем, по Шталю, они должны терять флогистон: при обратном присоединении флогистона к «земле» вес полученного металла меньше веса «земли». Таким образом выходило, что флогистон должен обладать каким-то особенным свойством - отрицательным тяготением. Несмотря на все остроумные гипотезы, высказанные для объяснения этого явления, оно было непонятно и вызывало недоумение.

Когда Лавуазье выяснил роль воздуха при горении и показал, что прибыль в весе металлов при обжигании происходит от присоединения к металлам кислорода из воздуха, и таким образом установил, что акт горения металлов есть не распадение на элементы, а, напротив, акт соединения, вопрос о сложности металлов был решен отрицательно. Металлы были отнесены к простым химическим элементам, в силу основной идеи Лавуазье, что простые тела суть те, из которых не удалось выделить других тел. С созданием периодической системы химических элементов Менделеевым элементы металлов заняли в ней своё законное место.

См. также

Примечания

Ссылки

  • С. П. Вуколов : // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907. (историческая часть)

Свойства химических элементов позволяют объединять их в соответствующие группы. На этом принципе была создана периодическая система, изменившая представление о существующих веществах и позволившая предположить существование новых, ранее неизвестных элементов.

Вконтакте

Периодическая система Менделеева

Периодическая таблица химических элементов была составлена Д. И. Менделеевым во второй половине XIX века. Что такое это, и для чего она нужна? Она объединяет все химические элементы по возрастанию атомного веса, причем, все они расставлены так, что их свойства изменяются периодическим образом.

Периодическая система Менделеева в свела в единую систему все существующие элементы, прежде считавшиеся просто отдельными веществами.

На основании ее изучения были предсказаны, а впоследствии - синтезированы новые химические вещества. Значение этого открытия для науки невозможно переоценить , оно значительно опередило свое время и дало толчок к развитию химии на многие десятилетия.

Существует три наиболее распространенных варианта таблицы, которые условно именуются «короткая», «длинная» и «сверхдлинная». Основной считается длинная таблица, она утверждена официально. Отличием между ними является компоновка элементов и длина периодов.

Что такое период

Система содержит 7 периодов . Они представлены графически в виде горизонтальных строк. При этом, период может иметь одну или две строки, называемые рядами. Каждый последующий элемент отличается от предыдущего возрастанием заряда ядра (количества электронов) на единицу.

Если не усложнять, период - это горизонтальная строка периодической таблицы. Каждый из них начинается металлом и заканчивается инертным газом. Собственно, это и создает периодичность - свойства элементов изменяются внутри одного периода, вновь повторяясь в следующем. Первый, второй и третий периоды - неполные, они называются малыми и содержат соответственно 2, 8 и 8 элементов. Остальные - полные, они имеют по 18 элементов.

Что такое группа

Группа - это вертикальный столбец , содержащий элементы с одинаковым электронным строением или, говоря проще, с одинаковой высшей . Официально утвержденная длинная таблица содержит 18 групп, которые начинаются со щелочных металлов и заканчиваются инертными газами.

Каждая группа имеет свое название, облегчающее поиск или классификацию элементов. Усиливаются металлические свойства в независимости от элемента по направлению сверху-вниз. Это связано с увеличением количества атомных орбит — чем их больше, тем слабее электронные связи, что делает более ярко выраженной кристаллическую решетку.

Металлы в периодической таблице

Металлы в таблице Менделеева имеют преобладающее количество, список их достаточно обширен. Они характеризуются общими признаками, по свойствам они неоднородны и делятся на группы. Некоторые из них имеют мало общего с металлами в физическом смысле, а иные могут существовать только доли секунды и в природе абсолютно не встречаются (по крайней мере, на планете ), поскольку созданы, точнее, вычислены и подтверждены в лабораторных условиях, искусственно. Каждая группа имеет собственные признаки , название и довольно заметно отличается от других. Особенно это различие выражено у первой группы.

Положение металлов

Какого положение металлов в периодической системе? Элементы расположены по увеличению атомной массы или количества электронов и протонов. Их свойства изменяются периодически, поэтому аккуратного размещения по принципу «один к одному» в таблице нет. Как определить металлы, и возможно ли это сделать по таблице Менделеева? Для того, чтобы упростить вопрос, придуман специальный прием: условно по местам соединения элементов проводится диагональная линия от Бора до Полония (или до Астата). Те, что оказываются слева - металлы, справа - неметаллы. Это было бы очень просто и здорово, но есть исключения - Германий и Сурьма.

Такая «методика» - своего рода шпаргалка, она придумана лишь для упрощения процесса запоминания. Для более точного представления следует запомнить, что список неметаллов составляет всего 22 элемента, поэтому отвечая на вопрос, сколько всего металлов всего содержится в таблице Менделеева

На рисунке можно наглядно увидеть, какие элементы являются неметаллами и как они располагаются в таблице по группам и периодам.

Общие физические свойства

Существуют общие физические свойства металлов. К ним относятся:

  • Пластичность.
  • Характерный блеск.
  • Электропроводность.
  • Высокая теплопроводность.
  • Все, кроме ртути, находятся в твердом состоянии.

Следует понимать, что свойства металлов очень различаются относительно их химической или физической сути. Некоторые из них мало похожи на металлы в обыденном понимании этого термина. Например, ртуть занимает особенное положение. Она при обычных условиях находится в жидком состоянии, не имеет кристаллической решетки, наличию которой обязаны своими свойствами другие металлы. Свойства последних в этом случае условны, с ними ртуть роднят в большей степени химические характеристики.

Интересно! Элементы первой группы, щелочные металлы, в чистом виде не встречаются, находясь в составе различных соединений.

Самый мягкий металл, существующий в природе - цезий - относится к этой группе. Он, как и другие щелочные подобные вещества, мало общего имеет с более типичными металлами. Некоторые источники утверждают, что на самом деле, самый мягкий металл калий, что сложно оспорить или подтвердить, поскольку ни тот, ни другой элемент не существует сам по себе — будучи выделенным в результате химической реакци они быстро окисляются или вступают в реакцию.

Вторая группа металлов - щелочноземельные - намного ближе к основным группам. Название «щелочноземельные» происходит из древних времен, когда окислы назывались «землями», поскольку они имеют рыхлую рассыпчатую структуру. Более-менее привычными (в обиходном смысле) свойствами обладают металлы начиная с 3 группы. С увеличением номера группы количество металлов убывает

Несколько научных дисциплин (материало- и металловедение, физика, химия) занимаются изучением свойств и характеристик металлов. Существует их общепринятая классификация. Однако каждая из дисциплин при их изучении опирается на особые специализированные параметры, находящиеся в сфере ее интересов. С другой стороны, все науки, изучающие металлы и сплавы, придерживаются одной точки зрения, что существует две основные группы: черные и цветные.

Признаки металлов

Различают следующие основные механические свойства:

  • Твердость - определяет возможность одного материала противодействовать проникновению другого, более твердого.
  • Усталость - количество, а также время циклических воздействий, которое может выдержать материал без изменения целостности.
  • Прочность. Заключается в следующем: если приложить динамическую, статическую или знакопеременную нагрузку, то это не приведет к изменению формы, строения и размеров, нарушению внутренней и наружной целостности металла.
  • Пластичность - это способность удерживать целостность и полученную форму при деформации.
  • Упругость - это деформация без нарушения целостности под воздействием определенных сил, а также после избавления от нагрузки возможность к возращению первоначальной формы.
  • Стойкость к трещинам - под влиянием внешних сил в материале они не образуются, а также сохраняется наружная целостность.
  • Износостойкость - способность сохранять наружную и внутреннюю целостность при продолжительном трении.
  • Вязкость - сохранение целостности при увеличивающихся физических воздействиях.
  • Жаростойкость - противостояние изменению размера, формы и разрушению при воздействии высоких температур.

Классификация металлов

К металлам относятся материалы, обладающие совокупностью механических, технологических, эксплуатационных, физических и химических характерных свойств:

  • механические подтверждают способность к сопротивлению деформации и разрушению;
  • технологические свидетельствуют о способности к разному виду обработки;
  • эксплуатационные отражают характер изменения при эксплуатации;
  • химические показывают взаимодействие с различными веществами;
  • физические указывают на то, как ведет себя материал в разных полях - тепловом, электромагнитном, гравитационном.

По системе классификации металлов все существующие материалы подразделяются на две объемные группы: черные и цветные. Технологические и механические свойства также тесно связаны. К примеру, прочность металла может являться результатом правильной технологической обработки. Для этих целей используют так называемую закалку и «старение».

Химические, физические и механические свойства тесно взаимосвязаны между собой, так как состав материала устанавливает все остальные его параметры. Например, тугоплавкие металлы являются самыми прочными. Свойства, которые проявляются в состоянии покоя, называются физическими, а под воздействием извне - механическими. Также существуют таблицы классификации металлов по плотности - основному компоненту, технологии изготовления, температуре плавления и другие.

Черные металлы

Материалы, относящиеся к этой группе, обладают одинаковыми свойствами: внушительной плотностью, большой температурой плавления и темно-серой окраской. К первой большой группе черных металлов принадлежат следующие:


Цветные металлы

Вторая по величине группа имеет небольшую плотность, хорошую пластичность, невысокую температуру плавления, преобладающие цвета (белый, желтый, красный) и состоит из следующих металлов:

  • Легкие - магний, стронций, цезий, кальций. В природе встречаются только в прочных соединениях. Применяются для получения легких сплавов разного назначения.
  • Благородные. Примеры металлов: платина, золото, серебро. Они обладают повышенной устойчивостью к коррозии.
  • Легкоплавкие - кадмий, ртуть, олово, цинк. Имеют невысокую температуру плавления, участвуют в производстве разных сплавов.

Низкая прочность цветных металлов не позволяет их использовать в чистом виде, поэтому в промышленности их применяют в виде сплавов.

Медь и сплавы с медью

В чистом виде имеет розовато-красный цвет, маленькое удельное сопротивление, небольшую плотность, хорошую теплопроводность, отличную пластичность, обладает стойкостью к коррозии. Находит широкое применение как проводник электрического тока. Для технических нужд используют два вида сплавов из меди: латуни (медь с цинком) и бронзы (медь с алюминием, оловом, никелем и другими металлами). Латунь используется для изготовления листов, лент, труб, проволоки, арматуры, втулок, подшипников. Из бронзы изготавливают плоские и круглые пружины, мембраны, разную арматуру, червячные пары.

Алюминий и сплавы

Этот очень легкий металл, имеющий серебристо-белый цвет, обладает высокой коррозийной стойкостью. У него хорошая электропроводность и пластичность. Благодаря своим характеристикам нашел применение в пищевой, легкой и электропромышленности, а также в самолетостроении. Сплавы из алюминия очень часто используются в машиностроении для изготовления особо ответственных деталей.

Магний, титан и их сплавы

Магний неустойчив к коррозии, зато не существует легче металла, используемого для технических нужд. В основном его добавляют в сплавы с другими материалами: цинком, марганцем, алюминием, которые прекрасно режутся и являются достаточно прочными. Из сплавов с легким металлом магнием изготавливают корпусы фотоаппаратов, различных приборов и двигателей. Титан нашел свое применение в ракетной отрасли, а также машиностроении для химической промышленности. Титаносодержащие сплавы имеют небольшую плотность, прекрасные механические свойства и стойкость к коррозии. Они хорошо поддаются обработке давлением.

Антифрикционные сплавы

Такие сплавы определены для увеличения срока службы поверхностей, испытывающих трение. Они сочетают в себе следующие характеристики металла - хорошую теплопроводность, маленькую температуру плавления, микропористость, слабый коэффициент трения. К антифрикционным относят сплавы, основой которых является свинец, алюминий, медь или олово. К самым применяемым относятся:

  • баббит. Его изготовляют на основе свинца и олова. Используют в производстве вкладышей для подшипников, которые работают на больших скоростях и при ударных нагрузках;
  • алюминиевые сплавы;
  • бронза;
  • металлокерамические материалы;
  • чугун.

Мягкие металлы

По системе классификации металлов это золото, медь, серебро, алюминий, но среди самых мягких выделяют цезий, натрий, калий, рубидий и другие. Золото сильно распылено в природе. Оно есть в морской воде, организме человека, а также его можно встретить практически в любом осколке гранита. В чистом виде золото имеет желтый с оттенком красного цвет, так как металл мягкий - его можно поцарапать даже ногтем. Под влиянием окружающей среды золото достаточно быстро разрушается. Этот металл является незаменимым для электрических контактов. Несмотря на то что серебра в двадцать раз больше, чем золота, он также является редким.

Используется для производства посуды, ювелирных украшений. Легкий металл натрий также получил широкое распространение, востребован практически в каждой отрасли промышленности, в том числе химической - для производства удобрений и антисептиков.

Металлом является ртуть, хоть и находится в жидком состоянии, поэтому считается одним из самых мягких в мире. Этот материал используется в оборонной и химической промышленности, сельском хозяйстве, электротехнике.

Твердые металлы

В природе практически нет самых твердых металлов, поэтому добыть их очень сложно. В большинстве случаев их находят в упавших метеоритах. Хром принадлежит к тугоплавким металлам и является самым твердым из чистейших на нашей планете, к тому же он легко поддается механической обработке.

Вольфрам - это химический элемент. Считается самым твердым при сравнении с другими металлами. Имеет чрезвычайно высокую температуру плавления. Несмотря на твердость, из него можно выковывать любые нужные детали. Благодаря теплоустойчивости и гибкости это наиболее подходящий материал для выплавки небольших элементов, используемых в осветительных приборах. Тугоплавкий металл вольфрам - основное вещество тяжелых сплавов.

Металлы в энергетике

Металлы, в состав которых входят свободные электроны и положительные ионы, считаются хорошими проводниками. Это довольно востребованный материал, характеризующийся пластичностью, высокой электропроводностью и способностью легко отдавать электроны.

Из них делают силовые, радиочастотные и специальные провода, детали для электрических установок, машин, для бытовых электроприборов. Лидерами применения металлов для изготовления кабельной продукции считаются:

  • свинец - за большую устойчивость к коррозии;
  • медь - за высокую электропроводность, легкость в обработке, стойкость к коррозии и достаточную механическую прочность;
  • алюминий - за небольшой вес, устойчивость к вибрациям, прочность и температуру плавления.

Категории черных вторичных металлов

К отходам черных металлов предъявляют определенные требования. Для отправки сплавов в сталеплавильные печи потребуются определенные операции по их обработке. Перед подачей заявки на перевозку отходов необходимо ознакомиться с ГОСТом черных металлов для определения его стоимости. Черный вторичный лом классифицируют на стальной и чугунный. Если в составе присутствуют легирующие добавки, то его относят к категории «Б». В категорию «А» включены углеродистые: сталь, чугун, присад.

Металлурги и литейщики из-за ограниченности первичной сырьевой базы проявляют активный интерес к вторичному сырью. Использование лома черных металлов вместо металлической руды - это ресурсное, а также энергосберегающее решение. Вторичный черный металл используют как охладитель конвертерной плавки.

Диапазон применения металлов невероятно широк. Черные и цветные неограниченно используются в строительной и машинной индустрии. Не обойтись без цветных металлов и в энергетической промышленности. Редкие и драгоценные идут на изготовление украшений. В искусстве и медицине находят применение как цветные, так и черные металлы. Невозможно представить жизнь человека без них, начиная от хозяйственных принадлежностей и до уникальных приборов и аппаратов.

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса