Подпишись и читай
самые интересные
статьи первым!

Платежная матрица игры. Примеры матричных игр в чистой и смешанной стратегиях Уменьшение порядка платёжной матрицы

Практически любой метод принятия решений , используемый в управлении, можно технически рассматривать как разновидность моделирования. Однако по традиции термин модель обычно относится лишь к методам общего характера, только что описанным выше, а также к многочисленным их специфическим разновидностям. В дополнение к моделированию, имеется ряд методов, способных оказать помощь руководителю в поиске объективно обоснованного решения по выбору из нескольких альтернатив той, которая в наибольшей мере способствует достижению целей. Под заголовок данного раздела попадают платежная матрица и дерево решений , описанные ниже. Для облегчения использования этих методов и вообще повышения качества принимаемых решений руководство пользуется прогнозированием. Наиболее распространенные методы прогнозирования рассмотрены в следующем разделе. Наша цель заключается в том, чтобы помочь понять суть этих инструментов, а не научить ими пользоваться.  


Суть каждого принимаемого руководством решения - выбор наилучшей из нескольких альтернатив по конкретным установленным заранее критериям. (Если вы захотите вспомнить рассмотрение ограничений и критериев для принятия решений , обратитесь к гл. 6). Платежная матрица - это один из методов статистической теории решений , метод, который может оказать помощь руководителю в выборе одного из нескольких вариантов. Он особенно полезен, когда руководитель должен установить, какая стратегия в наибольшей мере будет способствовать достижению целей.  

В целом платежная матрица полезна, когда  

Вероятность прямо влияет на определение ожидаемого значения - центральной концепции платежной матрицы. Ожидаемое значение альтернативы или варианта стратегии - это сумма возможных значений, умноженных на соответствующие вероятности. К примеру, если вы считаете, что вложение средств (как стратегия действий) в киоск для торговли мороженым с вероятностью 0,5 обеспечит вам годовую прибыль 5000 долл., с вероятностью 0,2 - 10 000 долл. и с вероятностью 0,3 - 3000 долл., то ожидаемое значение составит  

В табл. 12.2 сведены результаты различных возможных решений по ценообразованию. Решая, какую цену установить, две фирмы играют в некооперативную игру - каждая фирма самостоятельно решает, как ей лучше поступить, принимая в расчет своего конкурента. Табл. 12.2 называют платежной матрицей для этой игры, так как она показывает прибыль каждой фирмы, если известны ее решение и решение ее конкурента. Например, верхний левый угол платежной матрицы говорит нам, что, если обе фирмы назначат цену 4 долл., каждая фирма получит прибыль 12 долл. Верхний правый угол показывает, что, если фирма 1 назначает цену в 4 долл., а фирма 2 - в 6 долл., фирма 1 получает прибыль в 20 долл., а фирма 2 - в 4 долл.  

ТАБЛИЦА 12.2 Платежная матрица для игры по протезированию цен  

Данная платежная матрица может прояснить ответ на первоначальный вопрос почему фирмы не действуют сообща и тем самым не получают более высокие прибыли, даже если они и имеют возможность договориться В данном случае договор означает, что обе фирмы назначат цену в 6 долл. вместо 4 долл. и получат при этом прибыль 16 долл. вместо 12 долл. Проблема заключается в том, что каждая фирма всегда старается выиграть, назначая цену в 4 долл., независимо от того, как поступает ее конкурент. Как показывает платежная матрица,  

Рассматривая предприятие (Р,) и природу (Р2) в качестве двух игроков, получим так называемую платежную матрицу следующего вида (табл. 6.11)  

Из платежной матрицы видно, что игрок Р, (предприятие) никогда не получит дохода меньше 6800. Но если погодные условия совпадут с выбранной стратегией, то выручка (выигрыш) предприятия будет составлять 26000 или 28400. Если игрок Р, будет постоянно применять стратегию А, а игрок Р2 - стратегию Д, то выигрыш снизится до 6800. То же самое произойдет, если игрок Р, будет постоянно применять стратегию В, а игрок Р2 -- стратегию С. Отсюда вывод, что наибольший доход предприятие обеспечит, если будет попеременно применять то стратегию А, то стратегию В. Такая стратегия называется смешанной, а ее элементы (А и В) - чистыми стратегиями.  

Рассматривая АО Силуэт и природу в качестве двух игроков /, и Р2, получим по итогам произведенных расчетов так называемую платежную матрицу следующего вида (с. 53).  

По данным платежной матрицы игрок Р1 (АО Силуэт) никогда не получит прибыль меньше 136 000 руб. Если погодные условия совпадут с выбранной стратегией, то прибыль АО (выигрыш) будет составлять 568 000 или 520 000 руб. Если игрок Р будет постоянно принимать стратегию А, а игрок Р2 - стратегию Д, то прибыль снизится до 136 000 руб. То же самое будет, если игрок Р постоянно принимает стратегию В, а игрок Р2 - страте-  

Пример. Суточный спрос на скоропортящийся продукт в тоннах выражается следующим распределением (спрос/вероятность) (0,0/0,2) (1,0/0,3) (2,0/0,4) (3,0/0,5). Пусть себестоимость тонны - 3 тыс. руб., продажная цена - 5 тыс. руб., прибыль за единицу- 2 тыс. руб. Магазин может держать запас в 0, 1,2 или 3 т. Положим, что дневной запас не может быть продан завтра, и остатки целиком списываются в убытки. Платежная матрица показана в табл. 7.2. Анализ с полной информацией приведен в табл. 7.3.  

Пусть торговое предприятие имеет т стратегий Т, Т,. .., Т, и имеется п возможных состояний природы Ль П2,. .., Пп. Так как природа не является заинтересованной стороной, исход любого сочетания поведения сторон можно оценить выигрышем Ъц первой стороны для каждой пары стратегий Т, и TIj. Все показатели игры заданы платежной матрицей йу.  

Пример. Предприятие планирует производство двух изделий А, Б с неопределенным спросом , предполагаемый уровень которого характеризуется двумя состояниями I, П. В зависимости от этих состояний прибыль предприятия различна и определяется платежной матрицей  

Требуется определить объемы производства каждого изделия, при котором предприятию гарантируется средняя величина при любом состоянии спроса . Решение. Проверка платежной матрицы на наличие седловой точки  

Пусть задана платежная матрица игры  

Условие игры обычно записывается в форме платежной матрицы, или матрицы игры (табл. 3.33).  

Пусть платежная матрица задана в качественных терминах. Данные  

Анализ платежных матриц позволяет сделать следующие выводы при неполной информации наилучший выбор - держать запас в 2 т с наибольшим значением прибыли 1,90 тыс. руб. Это лучшее, что вы можете сделать при ограниченной информации.  

В практике управления широко используются такие методы, как платежная матрица дерево целей или решений. Наиболее известным из них является метод дерева решений для сравнения и оценки выдвинутых альтернатив. Особенно данный метод полезен в ситуациях, когда менеджер имеет дело с неопределенностью. Этот метод дает общую картину решения выборы , риски и исходы, которые могут иметь место. Более того, данный метод помогает открыть новые альтернативы, которые ранее могли быть опущены по каким-то причинам.  

Приведенные выше данные платежной матрицы отражают оценку последствий разных вариантов действий. Дополнительно представлены некоторые предположения относительно вероятности тумана который скажется на самолето, но не на поезде) и ясной погоды. Мы видим, что вероятность ясной погоды в 10 рлз выше, чем ту лана. Далее, матрица показывает, что, действуя по первому варианту стратегии (самолет), если погода будет хорошей (9 шансов из 10), торговый агент по оценке продаст товаров на 4500 долл. (это и есть результат или последствия). Три других варианта последствий можно объяснить таким же образом, мы опускаем эти рассуждения.  

По словам Н. Пола Лумбы Платеж представляет собой денежное вознаграждение или полезность, являющиеся следствием конкретной стратегии в сочетании с конкретными обстоятельствами. Если платежи представить в форме таблицы (или матрицы), мы получаем платежную матрицу 24, как показано на рис. 8.4. Слова в сочетании с конкретными обстоятельствами очень важны, чтобы понять, когда можно использовать платежную матрицу и оценить, когда решение, принятое на ее основе, скорее всего будет надежным. В самом общем виде матрица означает, что платеж зависит от определенных событий, которые фактически свершаются. Если такое событие или состояние природы не случается на деле, платеж неизбежно будет иным.  

Определив ожидаемое значение каждой альтернативы и расположив результаты в виде матрицы, руководитель без труда может установить, какой выбор наиболее привлекателен при заданных критериях. Он будет, конечно, соответствовать наивысшему ожидаемому значению. Исследования показывают когда установлены точные значения вероятности, методы дерева решений и платежной матрицы обеспечивают принятие более качественных решений, чем традиционные подходы25.   седловую точку ot = max minay = max (22,21,20) = 22 - нижняя цена  

Суждения о предпочтительности альтернатив выносится по результатам их сравнения или оценки. Г позитивные и негативные стороны каждой из альтернатив и устанавливается некий компромисс, поз] сопоставление альтернативы с ранее принятым стандартом, критерием. Для этого используют критериальное сравнение Кепнера -Трегое, платежная матрица, дерево целей или решений, а также i теориях вероятности , предпочтений, полезности и др. Наиболее распространенным методом сравне) является метод дерева решений , особенно в ситуациях неопределенных , при наличии неуправляемы  

ИГРА С "ПРИРОДОЙ" - игра, в которой имеется только один игрок, причем исход ее зависит не только от его решений, но и от состояния "природы", т.е. не от сознательно противодействующего противника, но от объективной, невраждебной действительности. Платежная матрица в этом случае похожа на показанную в ст. "Матрица игры ", но здесь игрок X - это лицо, принимающее одно из т различных возможных решений, а игрок Y- "природа", принимающая и возможных состояний. При выборе решения игроком X могут использоваться различные критерии, напр.  

Платежная матрица - это один из методов статистической теории решений, метод, который может оказать помощь руководителю в выборе одного из нескольких вариантов. Он особенно полезен, когда руководитель должен установить, какая стратегия в наибольшей мере будет способствовать достижению целей.

В целом платежная матрица полезна, когда :

1. Имеется разумно ограниченное число альтернатив или вариантов стратегии для выбора между ними.

2. То, что может случиться, с полной определенностью не известно.

3. Результаты принятого решения зависят от того, какая именно выбрана альтернатива и какие события в действительности имеют место.

Кроме того, руководитель должен располагать возможностью объективной оценки вероятности релевантных событий и расчета ожидаемого значения такой вероятности. Руководитель редко имеет полную определенность. Но также редко он действует в условиях полной неопределенности. Почти во всех случаях принятия решений руководителю приходится оценивать вероятность или возможность события.

Подходы:

а) без учета численных значений вероятностей исходов

б) с учетом численных значений вероятностей исходов

После построения матрицы выбирается вариант действий, обеспечивает оптимальное значение критерия.

а) – Правила при выборе вариантов действий:

1)максимальное решение – максимизация максимума критерия. В качестве критерия прибыль или доход

2)максимальное решение – максимизация минимума критерия (критерий – прибыль или доход)

3)минимаксное решение – минимизация максимума критерия.

Минимаксное решение– средний по степени риска подход.

б) – все решения будут оптимистическими, т.к ориентированы на более благоприятный исход событий.

Подходы:

1)максимизация критериев

2)минимизация критериев

Платежная матрица с учетом вероятности исходов событий:

– вероятность i – того варианта исхода событий

– математическое ожидание критерия при выборе i – того варианта альтернатив действий

Алгоритм выбора решений:

1)Максимизация наиболее вероятных значений критерия

2)На основе правила максимальной вероятности минимизации наиболее вероятных значений критерия

3)На основе правила максимизации математического ожидания

4)На основе правила минимизации математического ожидания критерия.

35.Существование метода «Дерево решений».

Примеры подразумевают един.решение, однако на практике результат одного решения заставляет принимать следствие. Эту последовательность нельзя выразить платежной матрицей, поэтому, когда нужно принимать несколько решений, каждое из которых зависит от исходов предыдущего, используем схему «дерево решений».

Составляя «Дерево решений», можно нарисовать «ствол» и «ветви», отображающие структуру проблемы. Располагаются «деревья» слева направо. «Ветви» обозначают возможные альтернативные решения, которые могут быть приняты, и возможные исходы, возникающие в результате этих решений, ветви выходят из узлов, которые бывают двух типов:

1.Квадратный узел обозначает место, где принимаются решения

2.Квадратный узел обозначает место, где проявляются различные варианты исходов квадрата.

Два вида «ветвей»:

Пунктирные линии, выходящие из квадратов возможных решений, движение по ним зависит от принятия решений. На соответствующей пунктирной «ветви» проставляются все расходы, вызванные решением.

Сплошные линии, выходящие из кружков возможных исходов, движение по ним определяется исходом событий. На сплошной линии указывается вероятность данного исхода.

Квадрат – узел принятия решения.

Круг – узел ветвления вариантов исходов событий.

Пунктир – ветви, движение по которым зависит от принимаемого решения

Линия – ветви, движение по которым зависит от исхода событий.

3 этапа поиска решений:

1.Строится «дерево», когда все решения и их исходы указаны на «дереве», просчитывается каждый из вариантов, и в конце проставляется его денежный доход.

2.Вычисляется и проставляется на соответствующих «ветвях» вероятности каждого исхода.

3.Справа налево рассчитываются и проставляются денежные исходы каждого из узлов. Любые возникающие расходы вычитаются из ожидаемых доходов.

После того, как пройдены квадраты решений, выбирается «ветвь», ведущая к наибольшему из возможных при данном решении ожидаемому доходу. Другая «ветвь» зачеркивается, а ожидаемый доход проставляется над квадратом решения.

Так в конце третьего этапа оказывается сформированной последовательность решений, ведущая к максимальному доходу, в качестве критерия может выступать как максимизация математического ожидания, так и математическое ожидание потерь.

36.Особенности метода «Ранжирования решений» .

Данный метод предполагает 3 варианта стратегий: 1. осторожное (пессимистичное), 2. оптимистичное, 3.рациональное (рассчитано на среднее условие)

Известно, что метод платежной матрицы, без учета вероятности исхода, так же предполагает 3 варианта действий с точки зрения их рискованности.

Оптимистичной стратегией в методе платежной матрицы можно считать максимизационный подход, пессимистической - максимальный, а рациональный – минимаксный.

Суть пессимистической стратегии состоит в том, что ЛПР должно рассчитывать при выборе решения на худшее(решение не требует знания вероятности решения)

Оптимальное по критерию пессимизма решения определяется путем нахождения для каждого решения наихудшей оценки по всем ситуациям и последующ.выбором наилучшей из них (наилучшего из наихудшего решения).

Пример алгоритма выбора решения по критерию пессимизма .

Мы имеем n-вариантов действий, Aj и m – вариантов, Si – (события?).

Определен.ранги bij, для каждого из решения Aj (j=1+n).

В случае, если события будут развиваться по варианту Si в этом же этапе ранги могут быть выставлены либо индивидуально ЛПР, либо методом коллективной экспертной оценки. Результат ранжирования сводится в таблицу.

Варианты

Коэф-ты важности Kj

Aj (j=1 ÷n), по всем ситуациям Si (i=1÷m)

Коэф.важности Kj соответствует максимальному АО абсолютной величине значению ранга решения по всем ситуациям (наихудшая оценка). Kj=max bij по i.

Выбирается оптимальное решение, которое соответствует минимальному, по абсолютной величине, значению Kj всех решений (наилучшая оценка). А пессим.=min Kj по j.

Оптимистичной стратегии соответствует критерий оптимизма. В этом случае ЛПР должно рассчитывать на лучшее.

Оптимальное, по критерию оптимизма, решение определяется путем нахождения для каждого решения наилучшей оценки по всем ситуациям и последующим выборам наилучших из них (наилучшее решение). Правило выбора оптимального решения в дан.случае имеет вид: Kj=min bij по i, A =min Kj по j.

Оптимал.решение min A1 и A2. A оптим. – A1 и A2.

Рациональная стратегия реализации по критерию максимума среднего выигрыша.

ЛПР должно рассчитывать решение на наибольшую вероятность условия. Для реализации рациональной стратегии требуется знание вероятностей Pi исходов, событий Si.

Коэффициент важности в дан.случае представляет собой средний выигрыш, который получается при каждом решении по всем ситуациям.

Вар-т исход

Вар.действий

Вар-т исход. Р

Коэф. важн.Kj

Mj=∑i aij*Pi. Оптимальное решение соответствует максимальному значению коэф.важности. Aрац.=max Kj по j. Оптимальным решением в дан.случае будет А3, т.к.ему соответствует max значение важности (К3=2,8)

Называется игра двух лиц с нулевой суммой, в которой в распоряжении каждого из них имеется конечное множество стратегий. Правила матричной игры определяет платёжная матрица, элементы которой - выигрыши первого игрока, которые являются также проигрышами второго игрока.

Матричная игра является антагонистической игрой. Первый игрок получает максимальный гарантированный (не зависящий от поведения второго игрока) выигрыш, равный цене игры, аналогично, второй игрок добивается минимального гарантированного проигрыша.

Под стратегией понимается совокупность правил (принципов), определяющих выбор варианта действий при каждом личном ходе игрока в зависимости от сложившейся ситуации.

Теперь обо всём по порядку и подробно.

Платёжная матрица, чистые стратегии, цена игры

В матричной игре её правила определяет платёжная матрица .

Рассмотрим игру, в которой имеются два участника: первый игрок и второй игрок. Пусть в распоряжении первого игрока имеется m чистых стратегий, а в распоряжении второго игрока - n чистых стратегий. Поскольку рассматривается игра, естественно, что в этой игре есть выигрыши и есть проигрыши.

В платёжной матрице элементами являются числа, выражающие выигрыши и проигрыши игроков. Выигрыши и проигрыши могут выражаться в пунктах, количестве денег или в других единицах.

Составим платёжную матрицу:

Если первый игрок выбирает i -ю чистую стратегию, а второй игрок - j -ю чистую стратегию, то выигрыш первого игрока составит a ij единиц, а проигрыш второго игрока - также a ij единиц.

Так как a ij + (- a ij ) = 0 , то описанная игра является матричной игрой с нулевой суммой.

Простейшим примером матричной игры может служить бросание монеты. Правила игры следующие. Первый и второй игроки бросают монету и в результате выпадает "орёл" или "решка". Если одновременно выпали "орёл" и "орёл" или "решка" или "решка", то первый игрок выиграет одну единицу, а в других случаях он же проиграет одну единицу (второй игрок выиграет одну единицу). Такие же две стратегии и в распоряжении второго игрока. Соответствующая платёжная матрица будет следующей:

Задача теории игр - определить выбор стратегии первого игрока, которая гарантировала бы ему максимальный средний выигрыш, а также выбор стратегии второго игрока, которая гарантировала бы ему максимальный средний проигрыш.

Как происходит выбор стратегии в матричной игре?

Вновь посмотрим на платёжную матрицу:

Сначала определим величину выигрыша первого игрока, если он использует i -ю чистую стратегию. Если первый игрок использует i -ю чистую стратегию, то логично предположить, что второй игрок будет использовать такую чистую стратегию, благодаря которой выигрыш первого игрока был бы минимальным. В свою очередь первый игрок будет использовать такую чистую стратегию, которая бы обеспечила ему максимальный выигрыш. Исходя из этих условий выигрыш первого игрока, который обозначим как v 1 , называется максиминным выигрышем или нижней ценой игры .

При для этих величин у первого игрока следует поступать следующим образом. Из каждой строки выписать значение минимального элемента и уже из них выбрать максимальный. Таким образом, выигрыш первого игрока будет максимальным из минимальных. Отсюда и название - максиминный выигрыш. Номер строки этого элемента и будет номером чистой стратегии, которую выбирает первый игрок.

Теперь определим величину проигрыша второго игрока, если он использует j -ю стратегию. В этом случае первый игрок использует такую свою чистую стратегию, при которой проигрыш второго игрока был бы максимальным. Второй игрок должен выбрать такую чистую стратегию, при которой его проигрыш был бы минимальным. Проигрыш второго игрока, который обозначим как v 2 , называется минимаксным проигрышем или верхней ценой игры .

При решении задач на цену игры и определение стратегии для определения этих величин у второго игрока следует поступать следующим образом. Из каждого столбца выписать значение максимального элемента и уже из них выбрать минимальный. Таким образом, проигрыш второго игрока будет минимальным из максимальных. Отсюда и название - минимаксный выигрыш. Номер столбца этого элемента и будет номером чистой стратегии, которую выбирает второй игрок. Если второй игрок использует "минимакс", то независимо от выбора стратегии первым игроком, он проиграет не более v 2 единиц.

Пример 1.

.

Наибольший из наименьших элементов строк - 2, это нижняя цена игры, ей соответствует первая строка, следовательно, максиминная стратегия первого игрока первая. Наименьший из наибольших элементов столбцов - 5, это верхняя цена игры, ей соответствует второй столбец, следовательно, минимаксная стратегия второго игрока - вторая.

Теперь, когда мы научились находить нижнюю и верхнюю цену игры, максиминную и минимаксную стратегии, пришло время научиться обозначать эти понятия формально.

Итак, гарантированный выигрыш первого игрока:

Первый игрок должен выбрать чистую стратегию, которая обеспечивала бы ему максимальный из минимальных выигрышей. Этот выигрыш (максимин) обозначается так:

.

Первый игрок использует такую свою чистую стратегию, чтобы проигрыш второго игрока был максимальным. Этот проигрыш обозначается так:

Второй игрок должен выбрать свою чистую стратегию так, чтобы его проигрыш был минимальным. Этот проигрыш (минимакс) обозначается так:

.

Ещё пример из этой же серии.

Пример 2. Дана матричная игра с платёжной матрицей

.

Определить максиминную стратегию первого игрока, минимаксную стратегию второго игрока, нижнюю и верхнюю цену игры.

Решение. Справа от платёжной матрицы выпишем наименьшие элементы в её строках и отметим максимальный из них, а снизу от матрицы - наибольшие элементы в столбцах и выберем минимальный из них:

Наибольший из наименьших элементов строк - 3, это нижняя цена игры, ей соответствует вторая строка, следовательно, максиминная стратегия первого игрока вторая. Наименьший из наибольших элементов столбцов - 5, это верхняя цена игры, ей соответствует первый столбец, следовательно, минимаксная стратегия второго игрока - первая.

Седловая точка в матричных играх

Если верхняя и нижняя цена игры одинаковая, то считается, что матричная игра имеет седловую точку. Верно и обратное утверждение: если матричная игра имеет седловую точку, то верхняя и нижняя цены матричной игры одинаковы. Соответствующий элемент одновременно является наименьшим в строке и наибольшим в столбце и равен цене игры.

Таким образом, если , то - оптимальная чистая стратегия первого игрока, а - оптимальная чистая стратегия второго игрока. То есть равные между собой нижняя и верхняя цены игры достигаются на одной и той же паре стратегий.

В этом случае матричная игра имеет решение в чистых стратегиях .

Пример 3. Дана матричная игра с платёжной матрицей

.

Решение. Справа от платёжной матрицы выпишем наименьшие элементы в её строках и отметим максимальный из них, а снизу от матрицы - наибольшие элементы в столбцах и выберем минимальный из них:

Нижняя цена игры совпадает с верхней ценой игры. Таким образом, цена игры равна 5. То есть . Цена игры равна значению седловой точки . Максиминная стратегия первого игрока - вторая чистая стратегия, а минимаксная стратегия второго игрока - третья чистая стратегия. Данная матричная игра имеет решение в чистых стратегиях.

Решить задачу на матричную игру самостоятельно, а затем посмотреть решение

Пример 4. Дана матричная игра с платёжной матрицей

.

Найти нижнюю и верхнюю цену игры. Имеет ли данная матричная игра седловую точку?

Матричные игры с оптимальной смешанной стратегией

В большинстве случаев матричная игра не имеет седловой точки, поэтому соответствующая матричная игра не имеет решений в чистых стратегиях.

Но она имеет решение в оптимальных смешанных стратегиях. Для их нахождения нужно принять, что игра повторяется достаточное число раз, чтобы на основании опыта можно было предположить, какая стратегия является более предпочтительной. Поэтому решение связывается с понятием вероятности и среднего (математического ожидания). В окончательном же решении есть и аналог седловой точки (то есть равенства нижней и верхней цены игры), и аналог соответствующих им стратегий.

Итак, чтобы чтобы первый игрок получил максимальный средний выигрыш и чтобы средний проигрыш второго игрока был минимальным, чистые стратегии следует использовать с определённой вероятностью.

Если первый игрок использует чистые стратегии с вероятностями , то вектор называется смешанной стратегией первого игрока. Иначе говоря, это "смесь" чистых стратегий. При этом сумма этих вероятностей равна единице:

.

Если второй игрок использует чистые стратегии с вероятностями , то вектор называется смешанной стратегией второго игрока. При этом сумма этих вероятностей равна единице:

.

Если первый игрок использует смешанную стратегию p , а второй игрок - смешанную стратегию q , то имеет смысл математическое ожидание выигрыша первого игрока (проигрыша второго игрока). Чтобы его найти, нужно перемножить вектор смешанной стратении первого игрока (который будет матрицей из одной строки), платёжную матрицу и вектор смешанной стратегии второго игрока (который будет матрицей из одного столбца):

.

Пример 5. Дана матричная игра с платёжной матрицей

.

Определить математическое ожидание выигрыша первого игрока (проигрыша второго игрока), если смешанная стратегия первого игрока , а смешанная стратегия второго игрока .

Решение. Согласно формуле математического ожидания выигрыша первого игрока (проигрыша второго игрока) оно равно произведению вектора смешанной стратегии первого игрока, платёжной матрицы и вектора смешанной стратегии второго игрока:

первого игрока называется такая смешанная стратегия , которая обеспечивала бы ему максимальный средний выигрыш , если игра повторяется достаточное число раз.

Оптимальной смешанной стратегией второго игрока называется такая смешанная стратегия , которая обеспечивала бы ему минимальный средний проигрыш , если игра повторяется достаточное число раз.

По аналогии с обозначениями максимина и минимакса в случах чистых стратегий оптимальные смешанные стратегии обозначаются так (и увязываются с математическим ожиданием, то есть средним, выигрыша первого игрока и проигрыша второго игрока):

,

.

В таком случае для функции E существует седловая точка , что означает равенство .

Для того, чтобы найти оптимальные смешанные стратегии и седловую точку, то есть решить матричную игру в смешанных стратегиях , нужно свести матричную игру к задаче линейного программирования, то есть к оптимизационной задаче, и решить соответствующую задачу линейного программирования.

Сведение матричной игры к задаче линейного программирования

Для того, чтобы решить матричную игру в смешанных стратегиях, нужно составить прямую задачу линейного программирования и двойственную ей задачу . В двойственной задаче расширенная матрица, в которой хранятся коэффициенты при переменных в системе ограничений, свободные члены и коэффициенты при переменных в функции цели, транспонируется. При этом минимуму функции цели исходной задачи ставится в соответствие максимум в двойственной задаче.

Функция цели в прямой задаче линейного программирования:

.

Система ограничений в прямой задаче линейного программирования:

Функция цели в двойственной задаче:

.

Система ограничений в двойственной задаче:

Оптимальный план прямой задачи линейного программирования обозначим

,

а оптимальный план двойственной задачи обозначим

Линейные формы для соответствующих оптимальных планов обозначим и ,

а находить их нужно как суммы соответствующих координат оптимальных планов.

В соответствии определениям предыдущего параграфа и координатами оптимальных планов, в силе следующие смешанные стратегии первого и второго игроков:

.

Математики-теоретики доказали, что цена игры следующим образом выражается через линейные формы оптимальных планов:

,

то есть является величиной, обратной суммам координат оптимальных планов.

Нам, практикам, остаётся лишь использовать эту формулу для решения матричных игр в смешанных стратегиях. Как и формулы для нахождения оптимальных смешанных стратегий соответственно первого и второго игроков:

в которых вторые сомножители - векторы. Оптимальные смешанные стратегии также, как мы уже определили в предыдущем параграфе, являются векторами. Поэтому, умножив число (цену игры) на вектор (с координатами оптимальных планов) получим также вектор.

Пример 6. Дана матричная игра с платёжной матрицей

.

Найти цену игры V и оптимальные смешанные стратегии и .

Решение. Составляем соответствующую данной матричной игре задачу линейного программирования:

Получаем решение прямой задачи:

.

Находим линейную форму оптимальных планов как сумму найденных координат.

Таблица, в которой показаны выплаты каждому участнику при двусторонней игре. Строки таблицы отражают результаты каждого выбора стратегии одним участником, а столбцы – результаты выбора другого. Может существовать одна матрица, показывающая выигрыш каждого игрока, а также альтернативный вариант, когда каждый квадрат в многомерной платежной матрице может содержать два числа, чтобы показать выплаты обоим игрокам. При игре с нулевой суммой выплаты второму игроку будут равны выплатам первому; таким образом, только один ряд необходимо записать подробно.


Конец работы -

Эта тема принадлежит разделу:

Ограничению риска в системе бизнеса носят название риск-менеджмент

Под риском понимают все внутренние и внешние предпосылки которые мо.. гут негативно повлиять на достижение стратегических целей в течение точно.. определенного отрезка времени наблюдения например периода оператив..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Виды рисков. Факторы, влияющие на возникновение рисков
Классификация: А) По характеру последствий: · Чистые (вызывают только убыток-риск пожара или наводнения); · Спекулятивные (могут приносить как убытки, та

Факторы, влияющие на возникновение рисков
Все рискообразующие факторы можно разделить на 2 группы: · внутренние факторы, возникающие в процессе деятельности предприятия; · внешние факторы, суще

Организация процесса управления рисками в организации
Первым этапом организации риск-менеджмента является определение цели риска и цели рисковых вложений капитала. Цель риска – это результат, который необходимо получить. Им может быть

Управление информационными рисками
Работа по минимизации информационных рисков заключается в предупреждении несанкционированного доступа к данным, а также аварий и сбоев оборудования. Для минимизации информационных рисков с

Карта рисков
Карта рисков – простой метод оценки рисков Представители разных отраслей экономики – зачастую задают, как консультантам по управлению рисками вопрос: есть ли простые и наг

Описание структуры карты рисков
На этой карте рисков вероятность или частота отображается по вертикальной оси, а сила воздействия или значимость - по горизонтальной оси. В этом случае вероятность появления риска увеличивае

Построение карты рисков
Производиться как в рамках внедрения системы управления рисками на уровне всей организации, что сложно, а зачастую и невозможно выполнить внутренними силами организации. Д

Основные шаги процесса самостоятельного картографирования рисков
1. первичное обучение 2. определение границ анализа 3. формирование состава команды 4. анализ сценариев и ранжирование 5. определение границы терпимости к риску

Методы управления рисками
Сами по себе методы риск-менеджмента достаточно разнообразны. Это связано с неоднозначностью понятия риска и наличием большого числа критериев их классификации. В следующем разделе

Параметрический метод
Он исходит из предположения о нормальном распределении вероятностей рассматриваемых факторов риска и требует в процессе построения модели расчёта VAR только оценки параметров этого

Моделирование по историческим данным
Метод исторического моделирования (historical simulation) основан на использовании исторических данных по изменениям факторов рыночного риска для получения распределения будущих колебаний стоимости

Метод Монте-Карло
из учебника: Метод Монте-Карло заключается в определении статистических моделей для активов портфеля и их моделировании посредством генерации случайных траекторий. З

Метод анализа сценариев
Метод анализа сценариев изучает эффект изменения капитала портфеля в зависимости от изменения величин рисковых факторов (напр., процентной ставки, волатильности) или параметров модели. Модел

Основные количественные характеристики рисков
Риск, которому подвергается предприятие, - это вероятная угроза разорения или несения таких финансовых потерь, которые могут остановить все дело. Поскольку вероятность неудачи присут

Выбор проектов на основе математического ожидания и среднего квадратического отклонения
Главной целью любого инвестора является получение ожидаемой прибыли от результатов инвестирования. Эта прибыль является ожидаемой в том смысле, что на этапе осуществления инвестирования ее величина

Закон нормального распределения (закон Гаусса)
Нормальное распределение (распределение Гаусса) используется при оценке надежности изделий, на которые воздействует ряд случайных факторов, каждый из которых незначительно влияет на результирующий

Типы математических игр
Кооперативные и некооперативные Игра называется кооперативной, или коалиционной, если игроки могут объединяться в группы, взяв на себя некоторые обязательства перед другими игроками и коор

Чистые стратегии в математической игре

Смешанные стратегии в математической игре
В теории игр страте́гия игрока в игре или деловой ситуации - это полный план действий при всевозможных ситуациях, способных возникнуть. Стратегия определяет действие игрока в любой момент игры

Вопрос №24
Основная теорема теории матричных игр, или теорема о минимаксе. Если – матрица

Вопрос №25
Графический метод применим к тем играм, в которых хотя бы один из игроков имеет две стратегии. Основные этапы нахождения решения игры 2×n или m×2: 1.Строят прямые, соо

Аналитическое решение смешанной игры
Чтобы найти оптимальную смешанную стратегию игрока А: и соответствующую цену игры ν, необходим

Методика мажорирования стратегий
Мажорирование представляет отношение между стратегиями, наличие которого во многих практических случаях дает возможность сократить размеры исходной платежной матрицы игры. Рассмотри

Использование дерева решений
На практике результат одного решения заставляет нас принимать следующее решение и т. д. Когда нужно принять несколько решений в условиях неопределенности, когда каждое решение зависит от исхода пре

Функция полезности Неймана-Моргенштерна
Основные определения и аксиомы.Методология рационального принятия решений в условиях неопределенности, основанная на функции полезности индивида, опирается на пять аксиом, которые отражают м

Концепция рисковой стоимости VAR
Одной из основных задач финансовых институтов является оценка рыночных рисков, которые возникают вследствие флуктуации (благоприятном событии) цен акций, сырьевых товаров, обменных курсов, процентн

В данной матрице элементы величины α i и β j соответственно минимальные значения элементов a ij по строкам и максимальные по столбцам.

Построение платежной матрицы – наиболее трудоемкий этап подготовки принятия решения. Ошибки в платежной матрице не могут быть компенсированы никакими вычислительными методами и приведут к неверному итоговому результату.

Возможен и другой способ задания матрицы игры с природой – в виде матрицы рисков R, или матрицы потерь (упущенных возможностей) . Величина риска – это размер платы за отсутствие информации о состоянии среды. Матрица R может быть построена непосредственно из условий задачи или на основе матрицы выигрышей.

Риском r ij игрока А при использовании им стратегии А i , а игроком В – стратегии В j называют разность между выигрышем, который игрок А получил бы, если бы знал, что игрок В выберет стратегию В j , и выигрышем, который игрок получил бы, не имея этой информации. Зная стратегию игрока В, игрок А выбирает вариант действий, при котором его выигрыш максимален, то есть r ij = β j – a ij , где при заданномj .

Рассмотрим способ построения матрицы рисков на примере (табл. 8.2, 8.3).

Таблица 8.2

Пример платежной матрицы

α i

β j

Согласно выведенным определениям r ij и β j получаем матрицу рисков.

Таблица 8.3

Матрица рисков

Независимо от вида матрицы игры требуется выбрать такую стратегию игрока, которая была бы наиболее выгодной по сравнению с другими.

В условиях неопределенности для определения наилучших решений могут быть использованы следующие критерии:

1. Критерий максимакса (критерий крайнего оптимизма) . Позволяет определить стратегию, максимизирующую выигрыш игрока (М ):

.

Очевидно, что для матрицы выигрышей, представленной в табл. 8.2 , наилучшим решением будет А 1 , при котором достигается максимальный выигрыш – 9.

Следует отметить, что ситуации, требующие применения такого критерия, в экономике в общем нередки, и пользуются им не только безоглядные оптимисты, но и игроки, поставленные в безвыходное положение, когда они вынуждены руководствоваться принципом "или пан, или пропал".

2. Критерий Вальда (критерий максимина) . Данный критерий позволяет максимизировать минимально возможный выигрыш:

.

Для стратегии А 1
;

Для стратегии А 2
;

Для стратегии А 3
.

Соответственно W = 3, что соответствует стратегии А 2 игрока А.

Особенность максиминного критерия в том, что он ориентирует на выбор наиболее безопасного варианта. Это своего рода критерий для осторожного человека. Им главным образом следует пользоваться в тех случаях, когда действия направлены на удовлетворение жизненно важных потребностей и необходимо обеспечить успех при любых возможных условиях. Он имеет в качестве недостатка неубедительность использования в разных условиях окружающей обстановки. Однако в тех случаях, когда действия направлены на удовлетворение жизненно важных потребностей и необходимо обеспечить успех при любых возможных условиях, максиминный критерий в наибольшей степени соответствует существу задачи. Так или иначе, выбор такой стратегии определяется отношением игрока к риску.

3. Критерий Сэвиджа (критерий минимакса) . Позволяет минимизировать максимальные потери. Выбор стратегии аналогичен выбору стратегии по принципу Вальда с тем отличием, что игрок руководствуется не матрицей выигрыша, а матрицей рисков:

Для матрицы рисков, представленной в табл. 8.3,

Для стратегии А 1
;

Для стратегии А 2
;

Для стратегии А 3
.

Соответственно, S = 4, что соответствует стратегии А 1 игрока А.

Слабость данного критерия заключается в допущении, что результаты выбираются разумным противником, интересы которого прямо противоположны нашим собственным, то есть мы полагаем следующее: если применяемые правила принятия решений позволяют противнику извлечь какое-либо преимущество, то он обязательно это сделает. Однако если исключить вполне определенные условия конкурентной борьбы, то столь пессимистические допущения нельзя оправдать. Действительно, ведь результаты могут выбираться нерациональным "противником", а цели "противника" не обязательно полностью противоречат нашим собственным.

    Критерий Гурвица (критерий обобщенного максимина или критерий пессимизма – оптимизма) . Был предложен с учетом недостатков указанных выше критериев. При выборе решения он рекомендует руководствоваться неким средним результатом, характеризующим состояние между крайним пессимизмом и безудержным оптимизмом. Критерий имеет следующий вид:

,

где р – коэффициент пессимизма (
).

При р = 0 критерий Гурвица совпадает с максимаксным критерием, а при р = 1 – с критерием Вальда.

Покажем процедуру применения данного критерия для платежной матрицы при р = 0,4:

Для стратегии А 1
;

Для стратегии А 2
;

Для стратегии А 3 .

Тогда Н А = 6, что соответствует стратегии А 2 (для сравнения, при р = 0,3, оптимальной будет являться стратегия А 1).

Применительно к матрице рисков критерий Гурвица выглядит следующим образом:

,

    Критерий Лапласа . В его основу положено предположение, что поскольку о вероятностях получения того или иного результата ничего неизвестно, то можно полагать их равновероятными. Поэтому оценка каждой i -й стратегии производится как среднее арифметическое в i -й строке (L):

Для представленной выше платежной матрицы:

Для стратегии А 1
;

Для стратегии А 2
;

Для стратегии А 3
.

Соответственно, L = 4,75, что соответствует стратегии А 1 .

В случае, когда по принятому критерию рекомендуется к использованию несколько стратегий, выбор между ними может делаться по дополнительному критерию. Например, в расчет могут приниматься средние квадратичные отклонения от средних выигрышей при каждой стратегии.

Попытка сформулировать критерий оценки возможных решений в условиях неопределенности отражает стремление сделать более наглядными преимущества и недостатки каждого варианта действий в различной обстановке.

Как видно из представленных выше расчетов, использование различных критериев при решении одной задачи, как правило, приводит к получению неодинаковых результатов. Существует два подхода к выбору критериев для решения задач в условиях неопределенности. Первый из них – это разработка новых критериев или требований для выбора критерия принятия решения. Второй путь заключается в использовании любой, пусть самой скудной, информации о вероятностях реализации различных условий внешней среды (различных результатов, получаемых при реализации той или иной стратегии) или в проведении экспериментов с целью получения оценок этих вероятностей. Тем самым неопределенная задача становится вероятностной.

Оба пути трудоемки и, как правило, трудновыполнимы на практике, однако предпочтительнее все же второй путь. Первый путь приводит к поискам новых критериев для выбора лучшего из числа известных, затем – к поискам критериев для выбора из числа рассматриваемых и т. д. Иными словами, не существует критерия принятия решения, не основанного на оценках вероятностей, который удовлетворял бы определенным обоснованным требованиям "хорошего" критерия.

Ни один из предложенных методов выбора решений не является универсальным, способным удовлетворить любого ЛПР. Люди по-разному относятся к элементам риска, содержащимся в каждом решении. Один склонен рисковать в надежде добиться большего успеха, другой предпочитает всегда действовать осторожно. Разумеется, размеры риска, допускаемые в решении, зависят не только от характера ЛПР, но и от содержания целей.

Ученые считают, что правило минимаксных (осторожных) решений интуитивно применяется большинством руководителей в повседневной практике, в то время как стремление к максимуму ожидаемых результатов могло бы быть более эффективным для организации. Так, многие руководители предпочитают иметь на складах предприятия некоторые излишки запасов материалов, чем подвергаться риску возникновения простоев в производстве из-за перебоев в поставках.

В платежной матрице игры существует элемент, являющийся одновременно минимальным в своей строке и максимальным в своем столбце. Такой элемент называют седловой точкой. Седловая точка в игре имеет место тогда, когда наблюдается равенство α i = β j . При этом значение α i = β j V называют чистой ценой игры. В этом случае решение игры (совокупность оптимальных стратегий игроков) обладает следующим свойством: если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной стратегии. Поэтому для игры с седловой точкой минимаксные стратегии обладают устойчивостью.

В целом теория игр может рассматриваться как своеобразный методический инструмент для анализа ситуаций, характеризующихся конфликтом сторон и неопределенностью.

Однако в связи с отмеченными выше существенными ограничениями, лежащими в основе формализации игры, далеко не все реальные ситуации допускают такую формализацию, а полученные выводы в реальных ситуациях выглядят зачастую банальными (например, направить все ресурсы на наиболее эффективные операции) и могут требовать корректировки с позиций здравого смысла, диверсификации видов деятельности и т.д. Это снижает практическую эффективность игрового подхода в реальной деятельности.

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса