Подпишись и читай
самые интересные
статьи первым!

Матричные игры: примеры решения задач. Понятие об игровых моделях

Называется игра двух лиц с нулевой суммой, в которой в распоряжении каждого из них имеется конечное множество стратегий. Правила матричной игры определяет платёжная матрица, элементы которой - выигрыши первого игрока, которые являются также проигрышами второго игрока.

Матричная игра является антагонистической игрой. Первый игрок получает максимальный гарантированный (не зависящий от поведения второго игрока) выигрыш, равный цене игры, аналогично, второй игрок добивается минимального гарантированного проигрыша.

Под стратегией понимается совокупность правил (принципов), определяющих выбор варианта действий при каждом личном ходе игрока в зависимости от сложившейся ситуации.

Теперь обо всём по порядку и подробно.

Платёжная матрица, чистые стратегии, цена игры

В матричной игре её правила определяет платёжная матрица .

Рассмотрим игру, в которой имеются два участника: первый игрок и второй игрок. Пусть в распоряжении первого игрока имеется m чистых стратегий, а в распоряжении второго игрока - n чистых стратегий. Поскольку рассматривается игра, естественно, что в этой игре есть выигрыши и есть проигрыши.

В платёжной матрице элементами являются числа, выражающие выигрыши и проигрыши игроков. Выигрыши и проигрыши могут выражаться в пунктах, количестве денег или в других единицах.

Составим платёжную матрицу:

Если первый игрок выбирает i -ю чистую стратегию, а второй игрок - j -ю чистую стратегию, то выигрыш первого игрока составит a ij единиц, а проигрыш второго игрока - также a ij единиц.

Так как a ij + (- a ij ) = 0 , то описанная игра является матричной игрой с нулевой суммой.

Простейшим примером матричной игры может служить бросание монеты. Правила игры следующие. Первый и второй игроки бросают монету и в результате выпадает "орёл" или "решка". Если одновременно выпали "орёл" и "орёл" или "решка" или "решка", то первый игрок выиграет одну единицу, а в других случаях он же проиграет одну единицу (второй игрок выиграет одну единицу). Такие же две стратегии и в распоряжении второго игрока. Соответствующая платёжная матрица будет следующей:

Задача теории игр - определить выбор стратегии первого игрока, которая гарантировала бы ему максимальный средний выигрыш, а также выбор стратегии второго игрока, которая гарантировала бы ему максимальный средний проигрыш.

Как происходит выбор стратегии в матричной игре?

Вновь посмотрим на платёжную матрицу:

Сначала определим величину выигрыша первого игрока, если он использует i -ю чистую стратегию. Если первый игрок использует i -ю чистую стратегию, то логично предположить, что второй игрок будет использовать такую чистую стратегию, благодаря которой выигрыш первого игрока был бы минимальным. В свою очередь первый игрок будет использовать такую чистую стратегию, которая бы обеспечила ему максимальный выигрыш. Исходя из этих условий выигрыш первого игрока, который обозначим как v 1 , называется максиминным выигрышем или нижней ценой игры .

При для этих величин у первого игрока следует поступать следующим образом. Из каждой строки выписать значение минимального элемента и уже из них выбрать максимальный. Таким образом, выигрыш первого игрока будет максимальным из минимальных. Отсюда и название - максиминный выигрыш. Номер строки этого элемента и будет номером чистой стратегии, которую выбирает первый игрок.

Теперь определим величину проигрыша второго игрока, если он использует j -ю стратегию. В этом случае первый игрок использует такую свою чистую стратегию, при которой проигрыш второго игрока был бы максимальным. Второй игрок должен выбрать такую чистую стратегию, при которой его проигрыш был бы минимальным. Проигрыш второго игрока, который обозначим как v 2 , называется минимаксным проигрышем или верхней ценой игры .

При решении задач на цену игры и определение стратегии для определения этих величин у второго игрока следует поступать следующим образом. Из каждого столбца выписать значение максимального элемента и уже из них выбрать минимальный. Таким образом, проигрыш второго игрока будет минимальным из максимальных. Отсюда и название - минимаксный выигрыш. Номер столбца этого элемента и будет номером чистой стратегии, которую выбирает второй игрок. Если второй игрок использует "минимакс", то независимо от выбора стратегии первым игроком, он проиграет не более v 2 единиц.

Пример 1.

.

Наибольший из наименьших элементов строк - 2, это нижняя цена игры, ей соответствует первая строка, следовательно, максиминная стратегия первого игрока первая. Наименьший из наибольших элементов столбцов - 5, это верхняя цена игры, ей соответствует второй столбец, следовательно, минимаксная стратегия второго игрока - вторая.

Теперь, когда мы научились находить нижнюю и верхнюю цену игры, максиминную и минимаксную стратегии, пришло время научиться обозначать эти понятия формально.

Итак, гарантированный выигрыш первого игрока:

Первый игрок должен выбрать чистую стратегию, которая обеспечивала бы ему максимальный из минимальных выигрышей. Этот выигрыш (максимин) обозначается так:

.

Первый игрок использует такую свою чистую стратегию, чтобы проигрыш второго игрока был максимальным. Этот проигрыш обозначается так:

Второй игрок должен выбрать свою чистую стратегию так, чтобы его проигрыш был минимальным. Этот проигрыш (минимакс) обозначается так:

.

Ещё пример из этой же серии.

Пример 2. Дана матричная игра с платёжной матрицей

.

Определить максиминную стратегию первого игрока, минимаксную стратегию второго игрока, нижнюю и верхнюю цену игры.

Решение. Справа от платёжной матрицы выпишем наименьшие элементы в её строках и отметим максимальный из них, а снизу от матрицы - наибольшие элементы в столбцах и выберем минимальный из них:

Наибольший из наименьших элементов строк - 3, это нижняя цена игры, ей соответствует вторая строка, следовательно, максиминная стратегия первого игрока вторая. Наименьший из наибольших элементов столбцов - 5, это верхняя цена игры, ей соответствует первый столбец, следовательно, минимаксная стратегия второго игрока - первая.

Седловая точка в матричных играх

Если верхняя и нижняя цена игры одинаковая, то считается, что матричная игра имеет седловую точку. Верно и обратное утверждение: если матричная игра имеет седловую точку, то верхняя и нижняя цены матричной игры одинаковы. Соответствующий элемент одновременно является наименьшим в строке и наибольшим в столбце и равен цене игры.

Таким образом, если , то - оптимальная чистая стратегия первого игрока, а - оптимальная чистая стратегия второго игрока. То есть равные между собой нижняя и верхняя цены игры достигаются на одной и той же паре стратегий.

В этом случае матричная игра имеет решение в чистых стратегиях .

Пример 3. Дана матричная игра с платёжной матрицей

.

Решение. Справа от платёжной матрицы выпишем наименьшие элементы в её строках и отметим максимальный из них, а снизу от матрицы - наибольшие элементы в столбцах и выберем минимальный из них:

Нижняя цена игры совпадает с верхней ценой игры. Таким образом, цена игры равна 5. То есть . Цена игры равна значению седловой точки . Максиминная стратегия первого игрока - вторая чистая стратегия, а минимаксная стратегия второго игрока - третья чистая стратегия. Данная матричная игра имеет решение в чистых стратегиях.

Решить задачу на матричную игру самостоятельно, а затем посмотреть решение

Пример 4. Дана матричная игра с платёжной матрицей

.

Найти нижнюю и верхнюю цену игры. Имеет ли данная матричная игра седловую точку?

Матричные игры с оптимальной смешанной стратегией

В большинстве случаев матричная игра не имеет седловой точки, поэтому соответствующая матричная игра не имеет решений в чистых стратегиях.

Но она имеет решение в оптимальных смешанных стратегиях. Для их нахождения нужно принять, что игра повторяется достаточное число раз, чтобы на основании опыта можно было предположить, какая стратегия является более предпочтительной. Поэтому решение связывается с понятием вероятности и среднего (математического ожидания). В окончательном же решении есть и аналог седловой точки (то есть равенства нижней и верхней цены игры), и аналог соответствующих им стратегий.

Итак, чтобы чтобы первый игрок получил максимальный средний выигрыш и чтобы средний проигрыш второго игрока был минимальным, чистые стратегии следует использовать с определённой вероятностью.

Если первый игрок использует чистые стратегии с вероятностями , то вектор называется смешанной стратегией первого игрока. Иначе говоря, это "смесь" чистых стратегий. При этом сумма этих вероятностей равна единице:

.

Если второй игрок использует чистые стратегии с вероятностями , то вектор называется смешанной стратегией второго игрока. При этом сумма этих вероятностей равна единице:

.

Если первый игрок использует смешанную стратегию p , а второй игрок - смешанную стратегию q , то имеет смысл математическое ожидание выигрыша первого игрока (проигрыша второго игрока). Чтобы его найти, нужно перемножить вектор смешанной стратении первого игрока (который будет матрицей из одной строки), платёжную матрицу и вектор смешанной стратегии второго игрока (который будет матрицей из одного столбца):

.

Пример 5. Дана матричная игра с платёжной матрицей

.

Определить математическое ожидание выигрыша первого игрока (проигрыша второго игрока), если смешанная стратегия первого игрока , а смешанная стратегия второго игрока .

Решение. Согласно формуле математического ожидания выигрыша первого игрока (проигрыша второго игрока) оно равно произведению вектора смешанной стратегии первого игрока, платёжной матрицы и вектора смешанной стратегии второго игрока:

первого игрока называется такая смешанная стратегия , которая обеспечивала бы ему максимальный средний выигрыш , если игра повторяется достаточное число раз.

Оптимальной смешанной стратегией второго игрока называется такая смешанная стратегия , которая обеспечивала бы ему минимальный средний проигрыш , если игра повторяется достаточное число раз.

По аналогии с обозначениями максимина и минимакса в случах чистых стратегий оптимальные смешанные стратегии обозначаются так (и увязываются с математическим ожиданием, то есть средним, выигрыша первого игрока и проигрыша второго игрока):

,

.

В таком случае для функции E существует седловая точка , что означает равенство .

Для того, чтобы найти оптимальные смешанные стратегии и седловую точку, то есть решить матричную игру в смешанных стратегиях , нужно свести матричную игру к задаче линейного программирования, то есть к оптимизационной задаче, и решить соответствующую задачу линейного программирования.

Сведение матричной игры к задаче линейного программирования

Для того, чтобы решить матричную игру в смешанных стратегиях, нужно составить прямую задачу линейного программирования и двойственную ей задачу . В двойственной задаче расширенная матрица, в которой хранятся коэффициенты при переменных в системе ограничений, свободные члены и коэффициенты при переменных в функции цели, транспонируется. При этом минимуму функции цели исходной задачи ставится в соответствие максимум в двойственной задаче.

Функция цели в прямой задаче линейного программирования:

.

Система ограничений в прямой задаче линейного программирования:

Функция цели в двойственной задаче:

.

Система ограничений в двойственной задаче:

Оптимальный план прямой задачи линейного программирования обозначим

,

а оптимальный план двойственной задачи обозначим

Линейные формы для соответствующих оптимальных планов обозначим и ,

а находить их нужно как суммы соответствующих координат оптимальных планов.

В соответствии определениям предыдущего параграфа и координатами оптимальных планов, в силе следующие смешанные стратегии первого и второго игроков:

.

Математики-теоретики доказали, что цена игры следующим образом выражается через линейные формы оптимальных планов:

,

то есть является величиной, обратной суммам координат оптимальных планов.

Нам, практикам, остаётся лишь использовать эту формулу для решения матричных игр в смешанных стратегиях. Как и формулы для нахождения оптимальных смешанных стратегий соответственно первого и второго игроков:

в которых вторые сомножители - векторы. Оптимальные смешанные стратегии также, как мы уже определили в предыдущем параграфе, являются векторами. Поэтому, умножив число (цену игры) на вектор (с координатами оптимальных планов) получим также вектор.

Пример 6. Дана матричная игра с платёжной матрицей

.

Найти цену игры V и оптимальные смешанные стратегии и .

Решение. Составляем соответствующую данной матричной игре задачу линейного программирования:

Получаем решение прямой задачи:

.

Находим линейную форму оптимальных планов как сумму найденных координат.

Игра называется игрой с нулевой суммой , или антагонистической , если выигрыш одного из игроков равен проигрышу другого, т.е. для полного задания игры достаточно указать величину одного из них. Если обозначить a - выигрыш одного из игроков, b - выигрыш другого, то для игры с нулевой суммой b = - a , поэтому достаточно рассматривать, например, a .

Выбор и осуществление одного из предусмотренных правилами действий называется ходом игрока. Ходы могут быть личными и случайными.

Личный ход - это сознательный выбор игроком одного из возможных действий (например, ход в шахматной игре).

Случайный ход - это случайно выбранное действие (например, выбор карты из перетасованной колоды). В своей работе я буду рассматривать только личные ходы игроков.

Стратегией игрока называется совокупность правил, определяющих выбор его действия при каждом личном ходе в зависимости от сложившейся ситуации. Обычно в процессе игры при каждом личном ходе игрок делает выбор в зависимости от конкретной ситуации. Однако в принципе, возможно, что все решения приняты игроком заранее (в ответ на любую сложившуюся ситуацию). Это означает, что игрок выбрал определенную стратегию, которая может быть задана в виде списка правил или программы. (Так можно осуществить игру с помощью ЭВМ). Игра называется конечной , если у каждого игрока имеется конечное число стратегий, и бесконечной - в противном случае.

Для того, чтобы решить игру, или найти решение игры, следует для каждого игрока выбрать стратегию, которая удовлетворяет условию оптимальности , т.е. один из игроков должен получать максимальный выигрыш , когда второй придерживается своей стратегии. В то же время второй игрок должен иметь минимальный проигрыш , если первый придерживается своей стратегии. Такиестратегии называются оптимальными . Оптимальные стратегии должны так же удовлетворять условию устойчивости , т.е. любому из игроков должно быть невыгодно отказаться от своей стратегии в этой игре.

Цель теории игр : определение оптимальной стратегии для каждого игрока. При выборе оптимальной стратегии естественно предполагать, что оба игрока ведут себя разумно с точки зрения своих интересов.

Антагонистические игры, в которых каждый игрок имеет конечное множество стратегий, называются матричными играми . Это название объясняется следующей возможностью описания игр такого рода. Составляем прямоугольную таблицу, в которой строки соответствуют стратегиям первого игрока, столбцы – стратегиям второго, а клетки таблицы, стоящие на пересечении строк и столбцов, соответствуют ситуациям игры. Если поставить в каждую клетку выигрыш первого игрока в соответствующей ситуации, то получим описание игры в виде некоторой матрицы. Эта матрица называется матрицей игры или матрицей выигрышей .

Одна и та же конечная антагонистическая игра может быть описана различными матрицами, отличающимися друг от друга лишь порядком строк и столбцов.

Рассмотрим игру m x n с матрицей Р = (a ij), i = 1,2, ... , m;j = 1,2, ... , n и определим наилучшую среди стратегий A 1 , А 2 , …, А m . Выбирая стратегию А i игрок А должен рассчитывать, что игрок В ответит на нее той из стратегий B j , для которой выигрыш для игрока А минимален (игрок В стремится "навредить" игроку А ). Обозначим через a i , наименьший выигрыш игрока А при выборе им стратегии А i для всех возможных стратегий игрока В (наименьшее число в i-й строке платежной матрицы), т.е.

a i = a ij , j = 1,..., n .

Среди всех чисел a i (i = 1,2, ... , m ) выберем наибольшее. Назовем a нижней ценой игры или максимальным выигрышем (максимином). Это гарантированный выигрыш игрока А при любой стратегии игрока В . Следовательно, , i = 1,... , m ; j = 1,..., n

Стратегия, соответствующая максимину, называется максимальной стратегией . Игрок В заинтересован в том, чтобы уменьшить выигрыш игрокаА ; выбирая стратегию B j , он учитывает максимально возможный при этом выигрыш для А .

Обозначим: β i = a ij , i = 1,... , m

Среди всех чисел B j выберем наименьшее и назовем β верхней ценой игры или минимаксным выигрышем (минимаксом). Это гарантированный проигрыш игрока В .

Следовательно, i = 1,... , m ; j = 1,..., n.

Стратегия, соответствующая минимаксу, называется минимаксной стратегией .

Принцип, диктующий игрокам выбор наиболее "осторожных" минимаксной и максиминной стратегий, называется принципом минимакса. Этот принцип следует из разумного предположения, что каждый игрок стремится достичь цели, противоположной цели противника.

Рассмотрим игру с матрицей

Буквой i будем обозначать номер нашей стратегии, буквой - номер стратегии противника.

Отбросим вопрос о смешанных стратегиях и будем рассматривать пока только чистые. Поставим задачу: определить наилучшую среди наших стратегий Проанализируем последовательно каждую из них, начиная с и кончая Выбирая мы должны рассчитывать, что противник ответит на нее той из стратегий для которой наш выигрыш минимален. Найдем минимальное из чисел строке и обозначим его

(знак обозначает минимальное значение данного параметра при всех возможных

Выпишем числа (минимумы строк) рядом с матрицей справа в виде добавочного столбца:

Выбирая какую-то стратегию , мы должны рассчитывать на то, что в результате разумных действий противника мы выиграем только Естественно, действуя наиболее осторожно (т. е. избегая всякого риска), мы должны предпочесть другим ту стратегию, для которой число максимально. Обозначим это максимальное значение

или. принимая во внимание формулу (4.1),

Величина а называется нижней ценой игры, иначе - максиминным выигрышем или максимином. Та стратегия игрока А, которая соответствует максимину а, называется максиминной стратегией.

Очевидно, если мы будем придерживаться максиминной стратегии, то нам при любом поведении противника гарантирован выигрыш, во всяком случае, не меньший а. Поэтому величина а и называется «нижней ценой игры». Это - тот гарантированный минимум, который мы можем себе обспечить, придерживаясь своей наиболее осторожной («перестраховочной») стратегии.

Очевидно, аналогичное рассуждение можно провести и за противника В. Он (аинтересован в том, чтобы обратить наш выигрыш в минимум; значит, он должен просмотреть все свои стратегии, выделяя для каждой из них максимальное значение выигрыша. Выпишем внизу матрицы (4,2) максимальные значения по столбцам:

и найдем их них минимальное:

(4.4)

Величина называется верхней ценой игры, иначе минимаксным выигрышем или минимаксом. Соответствующая выигрышу стратегия противника называется его минимаксной стратегией. Придерживаясь своей наиболее осторожной минимаксной стратегии, противник гарантирован, что в любом случае он проиграет не больше р.

Принцип осторожности, диктующий игрокам выбор соответствующих стратегий (максиминной и минимаксной), является в теории игр основным и называется принципом минимакса. Он вытекает из предположения о разумности каждого игрока, стремящегося достигнуть цели, противоположной цели противника. Наиболее «осторожные» максиминную и минимаксную стратегии часто обозначают общим термином «минимаксные стратегии».

Определим нижнюю и верхнюю цены игры, а также минимаксные стратегии, для трех примеров, рассмотренных в предыдущем параграфе.

Пример 1. (Игра «поиск»). Определяя минимумы строк и максимумы столбцов получим

Так как величины , постоянны и равны соответственно -1 и нижняя и верхняя цены игры также равны -1 и

Любая стратегия игрока А является его максиминной, а игрока В - его минимаксной стратегией. Вывод тривиален: придерживаясь любой из своих стратегий, игрок А может гарантировать, что он проиграет не более 1 руб.; то же может гарантировать и игрок В при любой своей стратегии.

Пример 2. (Игра три пальца»). Выписывая минимумы строк и максимумы столбцов, найдем нижнюю цену игры и верхнюю (выделены в таблице жирным шрифтом). Наша максиминная стратегия (применяя ее систематически, мы гарантируем, что выиграем не меньше -3, т. е. проиграем не больше 3).

Минимаксная стратегия противника - любая из стратегий применяя их систематически, он может гарантировать, что не отдаст более 4. Если мы отступим от своей максиминной стратегии (например, выберем А 2), то противник может нас «наказать» за это, применив и сведя наш выигрыш равным образом и отступление противника от его минимаксной стратегии может быть «наказано» увеличением его проигрыша до 6.

Обратим внимание на то, что минимаксные стратегии в данном случае не устойчивы. Действительно, пусть, например, противник выбрал одну из своих минимаксных стратегий и придерживается ее. Узнав об этом, мы перейдем к стратегии и будем выигрывать 4. На это противник ответит стратегией и будет выигрывать 5; на это мы, в свою очередь, ответим стратегией и будем выигрывать 4, и т. д. Таким образом, положение, при котором оба игрока пользуются своими минимаксными стратегиями, является неустойчивым и может быть нарушено поступившими сведениями о стратегии, которую применяет противная сторона. Однако такая неустойчивость наблюдается не всегда; в этом мы убедимся на следующем примере.

Пример 3. (Игра «вооружение и самолет»). Определяем минимумы строк и максимумы столбцов:

В данном случае нижняя цена игры равна верхней:

Минимаксные стратегии являются устойчивыми: если один из игроков придерживается своей минимаксной (максиминной) стратегии, то другой игрок никак не может улучшить свое положение, отступая от своей.

Таким образом, мы видим, что существуют игры, для которых нижняя цена равна верхней:

Эти игры занимают особое место в теории игр и называются играми с седловой точкой. В матрице такой игры существует элемент, являющийся одновременно минимальным в своей строке и максимальным в своем столбце; такой элемент называется седловой точкой» (по аналогии с седловой точкой на поверхности, где достигается минимум по одной координате и максимум по другой).

Общее значение нижней и верхней цены игры

называется чистой ценой игры.

Седловой точке соответствует пара минимаксных стратегий, эти стратегии называются оптимальными, а их совокупность - решением игры. Решение игры обладает следующим свойством: если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной (такое отклонение либо оставит положение неизменным, либо ухудшит его).

Действительно, пусть в игре с седловой точкой игрок А придерживается своей оптимальной стратегии, а игрок В - своей. До тех пор, пока это так - выигрыш остается постоянным и равным цене игры v. Теперь допустим, что В допустил отклонение от своей оптимальной стратегии. Так как элемент v является минимальным в своей строке, такое отклонение не может быть выгодным для В; равным образом и для А, если В придерживается своей оптимальной стратегии, не может быть выгодно отклонение от своей.

Мы видим, что для игры с седловой точкой минимаксные стратегии обладают устойчивостью. Пара оптимальных стратегий в игре с седловой точкой является как бы положением равновесия: отклонение от оптимальной стратегии вызывает такое изменение выигрыша, которое невыгодно для отклоняющегося игрока и вынуждает его вернуться к своей оптимальной стратегии.

Чистая цена игры v в игре с седловой точкой является тем значением выигрыша, которое в игре против разумного противника игрок А не может увеличить, а игрок В - уменьшить.

Заметим, что в платежной матрице может быть не одна седловая точка, а несколько.

Например, в матрице имеется шесть седловых точек, с общим значением выигрыша и соответствующими парами оптимальных стратегий: Нетрудно доказать (мы этого делать не будем), что если в матрице игры несколько седловых точек, то все они дают одно и то же значение выигрыша.

Пример. Сторона А - средства ПВО - обороняет от воздушного налета участок территории, располагая двумя орудиями № 1 и № 2, зоны действия которых не перекрываются (рис. 9.1). Каждое орудие может обстрелять только самолет, проходящий через его зону действия, но для этого оно должно заранее (до входа цели в зону) следить за ней и вырабатывать прицельные данные Если цель обстреляна, она поражается с вероятностью Сторона В располагает двумя самолетами, каждый из которых может быть направлен в любую зону В момент, когда сторона А осуществляет целераспределение (назначает, какому орудию по какой цели стрелять), движение самолета-цели № 1 направлено в зону действия орудия № 1, а цели № 2 - в зону действия орудия № 2. Однако после принятия решения по целераспределению каждая цель может сманеврировать, применив «обманный маневр» (см. пунктирные стрелки на рис 9.1).

Задача стороны А - обратить в максимум, а стороны В - обратить в минимум число пораженных целей Найти решение игры (оптимальные стратегии сторон)

Решение. У стороны А (средства ПВО) четыре возможные стратегии - каждое орудие следит за направляющейся в его зону целью,

Орудия следят за целями «крест-накрест» (каждое - за целью направляющейся к соседу),

Оба орудия следят за целью № 1,

Оба орудия следят за целью № 2 У стороны В (самолеты-цели) тоже четыре стратегии:

Обе целн не меняют направления,

Обе цели применяют обманный маневр.

Первая цель применяет обманный маневр, а вторая нет,

Вторая цель применяет обманный маневр, а первая нет.

Получается игра 4X4, матрица которой дана в таблице:

Находя минимумы строк и максимумы столбцов, убеждаемся, что нижняя цена игры равна верхней цене игры: значит, игра имеет седловую точку и решение в чистых стратегиях, приводящее к чистой цене игры . В данном случае седловых точек не одна, а целых четыре Каждой из них со ответствует пара оптимальных стратегий, дающая решение игры Цена игры означает, что при оптимальном поведении сторон самолеты будут неизбежно терять один самолет, и никакие ухищрения не помогут им терять меньше, а средствам ПВО - сбить больше одного самолета Достигается это состояние равновесия, когда обе стороны пользуются своими оптимальными стратегиями: орудия следят оба за одним и тем же самолетом (любым), а самолеты направляются после целераспределения в одну и ту же зону (любую)

Класс игр, имеющих седловую точку, весьма интересен как с теоретической, так и с практической точки зрения. К нему принадлежат, в частности, все так называемые «игры с полной информацией».

Игрой с полной информацией называется такая игра, в которой каждый игрок при каждом личном ходе знает результаты всех предыдущих ходов - как личных, так и случайных. Примерами игр с полной информацией могут служить: шашки, шахматы, известная игра в «крестики и нолики» и др.

В теории игр доказывается, что каждая игра с полной информацией имеет седловую точку и следовательно, решение в чистых стратегиях. Другими словами, в каждой игре с полной информацией существует пара оптимальных стратегий той и другой стороны, дающая устойчивый выигрыш, равный чистой цене игры. Если игра с полной информацией состоит только из личных ходов, то при применении каждой стороной своей оптимальной стратегии игра должна кончаться всегда вполне определенным исходом, равным цене игры

В качестве примера приведем следующую игру с полной информацией. Два игрока поочередно кладут одинаковые монеты на круглый стол, выбирая произвольно положение монеты (взаимное перекрытие монет не допускается). Выигрывает тот, кто положит последнюю монету (когда места для других уже не останется). Нетрудно убедиться, что исход этой игры предрешен, и существует определенная стратегия, обеспечивающая достоверный выигрыш тому из игроков, кто кладет монету первым. А именно, он должен первый раз положить монету в центр стола, а далее на каждый ход противника отвечать симметричным ходом. Очевидно, как бы ни вел себя противник, ему не избежать проигрыша. Поэтому игра имеет смысл только для лиц, не знающих ее решения. Точно так же дело обстоит с шахматами и другими играми с полной информацией; любая из этих игр обладает седловой точкой и, значит, решением, указывающим каждому игроку его оптимальную стратегию, так что игра имеет смысл только до тех пор, пока неизвестно решение. Решение шахматной игры не найдено (и в обозримом будущем вряд ли будет найдено) только потому, что число стратегий (комбинаций ходов) в шахматах слишком велико, чтобы можно было построить платежную матрицу и найти в ней седловую точку.

http://emm. *****/lect/lect5.html#vopros2

(в интернете смотрится лучше, чем эта копия)

Элементы теории игр

1. Основные понятия и определения. Предмет теории игр.
2. Парные игры с нулевой суммой. Решение в чистых стратегиях.
3. Решение игр в смешанных стратегиях.
4. Геометрическая интерпретация игр.
5. Приведение парной игры к задаче линейного программирования.
6. Общая схема решения парных игр с нулевой суммой.
7. Использование альтернативных критериев определения оптимальных стратегий.

1. Основные понятия и определения. Предмет теории игр

Довольно часто в своей практической деятельности человеку приходится сталкиваться с задачами, в которых необходимо принимать решение в условиях, когда две или более стороны преследуют различные цели, а результаты любого действия каждой из сторон зависят от мероприятий партнера. Такие ситуации, возникающие, например, при игре в шахматы, шашки или домино, относят к конфликтным : результат каждого хода игрока зависит от ответного хода противника. Каков будет этот ответный ход, заранее неизвестно, поэтому говорят, что решение приходится принимать в условиях неопределенности. Цель игры - выигрыш одного из участников.

В экономике конфликтные ситуации встречаются часто и имеют многообразный характер. К ним относятся, например, взаимоотношения между поставщиком и потребителем, покупателем и продавцом, банком и клиентом. В этих примерах конфликтная ситуация порождается различием интересов партнеров и стремлением каждого из них принимать решения, которые реализуют поставленные цели в наибольшей степени. При этом каждому приходится считаться не только со своими целями, но и с целями партнера, и учитывать неизвестные заранее решения, которые эти партнеры будут принимать.

Ситуация называется конфликтной , если в ней участвуют стороны, интересы которых полностью или частично противоположны.

Для рационального решения задач с конфликтными ситуациями существуют научно обоснованные методы. Такие методы разработаны математической теорией конфликтных ситуаций, которая называется теорией игр .

Игра – это действительный или формальный конфликт, в котором имеется по крайней мере два участника (игрока), каждый из которых стремится к достижению собственных целей.

Допустимые действия каждого из игроков, направленные на достижение некоторой цели, называются правилами игры .

Игра называется парной , если в ней участвуют два игрока, и множественной , если число игроков больше двух. Далее будем рассматривать только парные игры. В такой игре участвуют два игрока - A и B, интересы которых противоположны. Под игрой (процессом игры) будет понимать ряд действий со стороны A и B.

Количественная оценка результатов игры называется платежом .

Парная игра называется игрой с нулевой суммой , или антагонистической , если сумма платежей равна нулю, т. е выигрыш одного игрока равен проигрышу другого. В этом случае для полного задания игры достаточно указать одну из величин. Если, например, a – выигрыш одного из игроков, b - выигрыш другого, то для игры с нулевой суммой b = -a , поэтому достаточно рассматривать, например, a .

В рамках данного курса будем рассматривать парные игры с нулевой суммой.

Выбор и осуществление одного из действий, предусмотренных правилами, называется ходом игрока. Ходы могут быть личными и случайными.

Личный ход – это сознательный выбор игроком одного из возможных действий (например, ход в шахматной игре).

Случайный ход – это случайно выбранное действие (например, выбор карты из перетасованной колоды).

В дальнейшем мы будем рассматривать только личные ходы игроков.

Стратегией игрока называется совокупность правил, определяющих выбор его действия при каждом личном ходе в зависимости от сложившейся ситуации.

Обычно в процессе игры при каждом личном ходе игрок делает выбор в зависимости от конкретной ситуации. Однако, в принципе, возможно, что решения приняты игроком заранее (в ответ на любую сложившуюся ситуацию). Это означает, что игрок выбрал определенную стратегию, которая может быть задана в виде списка правил или программы.

Игра называется конечной , если у каждого игрока есть конечное число стратегий, и бесконечной – в противном случае.

Стратегия игрока называется оптимальной , если она обеспечивает игроку максимальный выигрыш (или, что то же самое, минимальный проигрыш), при условии, что второй игрок придерживается своей стратегии.

Если игра повторяется много раз, то игроков может интересовать не выигрыш и проигрыш в каждой конкретной партии, а средний выигрыш (проигрыш) во всех партиях.

Для того чтобы решить игру, или найти решение игры, необходимо для каждого из игроков выбрать оптимальную стратегию.

Таким образом, предмет теории игр составляют методы отыскания оптимальных стратегий игроков.

При выборе оптимальной стратегии естественно предполагать, что оба игрока ведут себя разумно с точки зрения своих интересов. Важнейшее ограничение теории игр - единственность выигрыша как показателя эффективности, в то время как в большинстве реальных экономических задач имеется более одного показателя эффективности. Кроме того, в экономике, как правило, имеют место задачи, в которых интересы партнеров не обязательно антагонистические. Однако решение игр при наличии многих участников, имеющих непротиворечивые интересы, - это гораздо более сложная задача.

Мы ограничимся рассмотрением парных игр с нулевой суммой.

2. Парные игры с нулевой суммой. Решение в чистых стратегиях

Рассмотрим парную конечную игру.

Пусть игрок А располагает m личными стратегиями: A1, A2, …, Am. Пусть у игрока B имеется n личных стратегий. Обозначим их B1, B2, …, Bn. В этом случае игра имеет размерность mxn..gif" width="39" height="17 src=">) однозначно определяется исход игры, т. е. выигрыш aij игрока А (положительный или отрицательный) и проигрыш (- aij) игрока В.

Предположим, что значения aij известны для любой пары стратегий (Ai, Bj).

Матрица А = (aij), 230" style="width:172.5pt">

a11 a12 ... a1n
a21 a22 ... a2n

Платежную матрицу также часто представляют в виде таблицы (см. таблицу 5.1).

Таблица 5.1 - Общий вид платежной матрицы

Строки матрицы А соответствуют стратегиям первого игрока, а столбцы – стратегиям второго.

Эти стратегии называются чистыми .

Пример 5.1. Составьте платежную матрицу для следующей игры (игра "Поиск").

Игрок А может спрятаться в одном из двух убежищ (I или II); игрок B ищет игрока A, и если найдет, то получает штраф 1 денежную единицу от А, в противном случае - платит игроку А 1 денежную единицу.

Решение.

Для того чтобы составить платежную матрицу следует проанализировать поведение каждого из игроков. Игрок А может спрятаться в убежище I - обозначим эту стратегию через A1, или в убежище II - стратегия A2.

Игрок B может искать первого игрока в убежище I - стратегия B1, либо в убежище II - стратегия B2. Если игрок А находится в убежище I и там его обнаруживает игрок B, т. е. осуществляется пара стратегий (A1, B1), то игрок А платит штраф, т. е. a11 = -1. Аналогично a22 = -1.

Очевидно, что комбинации стратегий (A1, B2) и (A2, B1) дают игроку А выигрыш, равный единице, поэтому a12 = a21 = 1.

Таким образом, для игры "Поиск" размера 2x2 получаем следующую платежную матрицу:

A (прячется) =

Рассмотрим игру размера mxn c матрицей А = (aij), https://pandia.ru/text/78/456/images/image002_132.gif" width="39" height="17 src=">и определим лучшую среди стратегий A1, A2, …, Am.

Выбирая стратегию Ai, игрок А должен рассчитывать, что игрок В ответит на нее той из стратегий Bj, для которой выигрыш игрока А минимален (игрок В стремится "навредить" игроку А).

Обозначим MsoNormalTable">

Среди чисел https://pandia.ru/text/78/456/images/image010_40.gif" width="44" height="16 src=">) выберем наибольшее . Назовем нижней ценой игры или максимальным выигрышем (максимином) . Это гарантированный выигрыш игрока А при любой стратегии игрока В .

Итоговую формулу можно записать следующим образом:

Стратегия, соответствующая максимину, называется максиминной стратегией .

Аналогичные рассуждения могут быть выполнены и в отношении игрока B.

Игрок B заинтересован в том, чтобы уменьшить выигрыш игрока А.

Выбирая стратегию Bj, он учитывает, что игрок A будет стремиться к максимальному выигрышу.

Обозначим https://pandia.ru/text/78/456/images/image015_30.gif" width="10" height="17 src=">.gif" width="58 height=23" height="23">и назовем верхней ценой игры или минимаксом . Это минимальный гарантированный проигрыш игрока В .

Таким образом:

Стратегия, соответствующая минимаксу, называется минимаксной стратегией .

Принцип, диктующий игрокам выбор наиболее "осторожных" максиминной и минимаксной стратегий, называется принципом минимакса . Этот принцип следует из разумного предположения, что каждый игрок стремится достичь цели, противоположной цели противника.

Игрок выбирает свои действия, предполагая, что противник будет действовать неблагоприятным образом, т. е. будет стараться "навредить".

Вернемся к примеру 5.1 и определим нижнюю и верхнюю цену игры в задаче "Поиск".

Рассмотрим платежную матрицу:

При выборе стратегии A1 (первая строка матрицы) минимальный выигрыш равен https://pandia.ru/text/78/456/images/image012_33.gif" width="10" height="8 src=">2 = min (-1; 1) = -1, он достигается при использовании игроком B стратегии B2.

Гарантируя себе максимальный выигрыш при любой стратегии игрока B, т. е..gif" width="10" height="8 src=">.gif" width="7" height="14">1 = max (-1; 1) = 1.

Аналогично, максимальный проигрыш игрока B при выборе им стратегии B2 (второй столбец) равен 2 = max (1; -1) = 1.

Таким образом, при любой стратегии игрока А гарантированный минимальный проигрыш игрока B равен = min (1, 2) = min (1, 1) = 1 - верхней цене игры.

Любая стратегия игрока B является минимаксной.

Результаты наших рассуждений сведем в таблицу 5.2, которая представляет собой платежную матрицу с дополнительной строкой j и столбцом i. На их пересечении будем записывать верхнюю и нижнюю цену игры.

Таблица 5.2 - Платежная матрица игры "Поиск" с дополнительными строкой и столбцом

Таким образом, в рассматриваемой задаче нижняя и верхняя цены игры различны: https://pandia.ru/text/78/456/images/image017_28.gif" height="14 src=">.

Если же верхняя и нижняя цены игры совпадают, то общее значение верхней и нижней цены v = https://pandia.ru/text/78/456/images/image017_28.gif" height="14 src=">называется чистой ценой игры , или просто ценой игры . Максиминная и минимаксная стратегии, соответствующие цене игры, являются оптимальными стратегиями , а их совокупность – оптимальным решением , или просто решением игры .

В этом случае игрок А получает максимальный гарантированный (не зависящий от поведения игрока В) выигрыш v , а игрок В добивается минимального гарантированного (не зависящего от поведения игрока А) проигрыша v . Говорят, что решение игры обладает устойчивостью , т. е., если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной стратегии.

Пара чистых стратегий Ai и Bj дает оптимальное решение игры тогда и только тогда, когда соответствующий ей элемент aij является одновременно наибольшим в своем столбце и наименьшим в своей строке.

Такая ситуация, если она существует, называется седловой точкой (по аналогии с поверхностью седла, которая искривляется вверх в одном направлении и вниз - в другом).

Таким образом, для игры с седловой точкой нахождение решения заключается в выборе максиминной и минимаксной стратегии, которые и являются оптимальными.

Пример 5.2. Определите нижнюю и верхнюю цену игры, которая задана следующей платежной матрицей:

0,5 0,6 0,8
0,9 0,7 0,8
0,7 0,6 0,6

Решение.

Выясним, имеет ли игра седловую точку. Решение удобно проводить в таблице. Таблица 5.3 включает платежную матрицу игры, а также дополнительные строку и столбец, которые иллюстрируют процесс поиска оптимальных стратегий.

Таблица 5.3 - Платежная матрица примера 5.2 с дополнительными строкой и столбцом

Приведем некоторые пояснения.

Столбец https://pandia.ru/text/78/456/images/image012_33.gif" width="10" height="8 src=">1 = 0,5; 2 = 0,7; 3 = 0,6 - минимальные числа в строках.

Аналогично, https://pandia.ru/text/78/456/images/image017_28.gif" width="7 height=14" height="14">2 = 0,7; 3 = 0,8 - максимальные числа в столбцах.

3. Решение игр в смешанных стратегиях

Итак, для игры с седловой точкой нахождение решения состоит в выборе максиминной и минимаксной стратегий, которые и являются оптимальными.

Если игра не имеет седловой точки, то применение чистых стратегий не дает оптимального решения игры. Например, в игре "Поиск" (пример 5.1 ) седловая точка отсутствует.

В этом случае можно получить оптимальное решение, чередуя чистые стратегии.

Смешанной стратегией игрока А называется применение чистых стратегий А1, А2, …, Аm c вероятностями u1, u2, …, um.

Обычно смешанную стратегию первого игрока обозначают как вектор: U = (u1, u2, …, um), а стратегию второго игрока как вектор: Z = (z1, z2, …, zm).

Очевидно, что:

ui ≥ 0, ,
zj ≥ 0, ,
ui = 1, zj = 1.

Оптимальное решение игры (или просто - решение игры ) – это пара оптимальных стратегий U*, Z*, в общем случае смешанных, обладающих следующим свойством: если один из игроков придерживается своей оптимальной стратегии, то другому не может быть выгодно отступать от своей. Выигрыш, соответствующий оптимальному решению, называется ценой игры v . Цена игры удовлетворяет неравенству:

Справедлива следующая основная теорема теории игр.

Теорема Неймана . Каждая конечная игра с нулевой суммой имеет решение в смешанных стратегиях. .

Пусть U* = (, https://pandia.ru/text/78/456/images/image030_23.gif" width="15" height="17 src=">) и Z* = (, https://pandia.ru/text/78/456/images/image033_22.gif" width="13" height="17 src=">) - пара оптимальных стратегий. Если чистая стратегия входит в оптимальную смешанную стратегию с вероятностью, отличной от нуля, то она называется активной .

Теорема об активных стратегиях . Если один из игроков придерживается своей оптимальной смешанной стратегии, то выигрыш остается неизменным и равным цене игры v, если второй игрок не выходит за пределы своих активных стратегий. .

Эта теорема имеет большое практическое значение - она дает конкретные модели для нахождения оптимальных стратегий при отсутствии седловой точки.

Рассмотрим игру размера 2 x 2 .

Такая игра является простейшим случаем конечной игры. Если такая игра имеет седловую точку, то оптимальное решение - это пара чистых стратегий, соответствующих этой точке.

Для игры, в которой отсутствует седловая точка в соответствии с теоремой Неймана, оптимальное решение существует и определяется парой смешанных стратегий U* = (https://pandia.ru/text/78/456/images/image029_24.gif" width="13" height="17 src=">) и Z* = (, https://pandia.ru/text/78/456/images/image029_24.gif" width="13" height="17"> = v. Учитывая, что + = 1, получим систему уравнений:

Рассмотрим парную конечную игру. Пусть игрок А располагает m личными стратегиями, которые обозначим А 1 , А 2 , …,А m . Пусть у игрока В имеется n личных стратегий, обозначим их В 1 2 , …, В n . Говорят, что игра имен размерность mn . В результате выбора игроками любой пары стратегий

A i и B i (I = 1, 2, …, m ; j = 1, 2, …, n )

однозначно определяется исход игры, т. е. выигрыш a ij игрока A (положительный или отрицательный) и проигрыш (- a ij ) игрока В . Предположим, что значения a ij известны для любой пары стратегий (Ai, Bj ). Матрица Р = (а ij ), i = 1, 2, …, m ; j = 1, 2, …, n , элементами которой являются выигрыши, соответствующие стратегиям A i и B j , называется платёжной матрицей или матрицей игры . Общий вид такой матрицы представлен в табл. 1. Строки этой таблицы соответствуют стратегиям игрока А , а столбцы - стратегиям игрока В .

Составим платёжную матрицу для следующей игры.

Таблица 1

А j B i

a 1n

a 2n

a m 1

a mn

1. Игра «поиск».

Игрок А может спрятаться в одном из убежищ (I и II); игрок В ищет игрока А , и если найдёт, то получает штраф 1 ден. ед. от А , в противном случае платит игроку А 1 ден. ед. Необходимо построить платёжную матрицу игры.

Решение. Для составления платёжной матрицы следует проанализировать поведение каждого из игроков. Игрок А может спрятаться в убежище I - обозначим эту стратегию через А 1 или в убежище II - стратегия А 2 .

Игрок В может искать первого игрока в убежище I - стратегия В 1 , либо в убежище II - стратегия В 2 . Если игрок А находится в убежище I и там его обнаруживает игрок В , т.е. осуществляется пара стратегий (А 1 , В 1), то игрок А платит штраф, т.е. а 11 = -1. аналогично получаем а 22 = -1 (А 2 , В 2). Очевидно, что стратегии (А 1 , В 1) и (А 2 , В 2) дают игроку А выигрыш 1, поэтому а 12 = а 21 = 1.

Начало условия задачи; - окончание решения задачи.

Таким образом, для игры «поиск» размера 2 2 получаем платежную матрицу

Рассмотрим игру m n с матрицей Р = (а ij ), i = 1, 2, …, m ; j = 1, 2, …, n и определим наилучшую среди стратегий А 1 , А 2 , …, А m . Выбирая стратегию A i , игрок А должен рассчитывать, что игрок В ответит на неё той из стратегий B j , для которой выигрыш для игрока А минимален (игрок В стремится «навредить» игроку А ).

Обозначим через а i наименьший выигрыш игрока А при выборе им стратегии A i для всех возможных стратегий игрока В (наименьшее число в i -ой строке платёжной матрицы), т.е.

а ij = i . (1.1)

среди всех чисел? i (i = 1, 2, …, m ) выберем наибольшее: ? = ? i . Назовем? нижней ценой игры , или максимальным выигрышем (максимином). Это гарантированный выигрыш игрока А при любой стратегии игрока В. Следовательно,

? = a ij . (1.2)

Стратегия, соответствующая максимину, называется максиминной стратегией. Игрок В заинтересован в том, чтобы уменьшить выигрыш игрока А ; выбирая стратегию B j , он учитывает максимально возможный при этом выигрыш для А . Обозначим

? j = a ij (1.3)

Среди всех чисел? j выберем наименьшее? = ? j и назовем? верхней ценой игры или минимаксным выигрышем (минимаксом). Это гарантированный проигрыш игрока В . Следовательно,

? = a ij . (1.4)

Стратегия, соответствующая минимаксу, называется минимаксной стратегией .

Принцип, диктующий игрокам выбор наиболее «осторожных» минимаксной и максиминной стратегий, называется принципом минимакса. Этот принцип следует из разумного предположения, что каждый игрок стремится достичь цели, противоположной цели противника. Определим нижнюю и верхнюю цены игры и соответствующие стратегии в задаче 1. Рассмотрим платёжную матрицу

из задачи 1. При выборе стратегии А 1 (первая строка матрицы) минимальный выигрыш равен? 1 = min(-1;1) = -1 и соответствует стратегии? 1 игрока В . При выборе стратегии А 2 (вторая строка матрицы) минимальный выигрыш равен? 2 = min(1;-1) = -1, он достигается при стратегии В 2 .

Гарантируя себе максимальный выигрыш при любой стратегии игрока В , т.е. нижнюю цену игры? = max(? 1 , ? 2) = max(-1;-1) = -1, игрок А может выбирать любую стратегию: А 1 или А 2 , т.е. любая его стратегия является максиминной.

Выбирая стратегию В 1 (столбец 1), игрок В понимает, что игрок А ответит стратегией А 2 , чтобы максимизировать свой выигрыш (проигрыш В ). Следовательно, максимальный проигрыш игрока В при выборе им стратегии В 1 равен? 1 = max(-1;1) = 1.

Аналогично максимальный проигрыш игрока В (выигрыш А ) при выборе им стратегии В 2 (столбец 2) равен? 2 = max(1;-1) = 1.

Таким образом, при любой стратегии игрока А гарантированный минимальный проигрыш игрока В равен? = min (? 1 ; ? 2) = min(1;1) = 1 - верхней цене игры.

Любая стратегия игрока В является минимаксной. Дополнив табл. 1 строкой? j и столбцом? i , получим табл. 2. На пресечении дополнительных строки и столбца будем записывать верхнюю и нижнюю цены игр.

Таблица 2.

А j B i

? i

? j

В задаче 1 , рассмотренной выше, верхняя и нижняя цены игры различны? ? ?.

Если верхняя и нижняя цены игры совпадают, то общее значение верхней и нижней цены игры? = ? = v называется чистой ценой игры , или ценой игры . Минимаксные стратегии, соответствующие цене игры, являются оптимальными стратегиями , а их совокупность - оптимальным решением , или решением игры. В этом случае игрок А получает максимальный гарантированный (не зависящий от поведения игрока В ) выигрыш v, а игрок В добивается минимального гарантированного (вне зависимости от поведения игрока А ) проигрыша v. Говорят, что решение игры обладает устойчивостью, т.е. если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклонятся от своей оптимальной стратегии.

Пара чистых стратегий А j и B i даёт оптимальное решение игры тогда и только тогда, когда соответствующий элемент a ij является одновременно наибольшим в своём столбце и наименьшим в своей строке. Такая ситуация, если оан существует, называется седловой точкой (по аналогии с поверхностью седла, которая искривляется вверх в одном направлении и вниз - в другом).

Обозначим А * и B * - пару чистых стратегий, на которых достигается решение игры в задаче с седловой точкой. Введём функцию выигрыша первого игрока на каждой паре стратегий: Р (А i , B j ) = a ij . Тогда из условия оптимальности в седловой точке выполняется двойное неравенство: Р (А i , B *) ? Р (А * , B * ) ? Р (А * , B j ), которое справедливо для всех i = 1, …, m ; j = 1, …, n . действительно, выбор стратегии А * первым игроком при оптимальной стратегии B * второго игрока максимизирует минимальный возможный выигрыш: Р (А * , B * ) ? Р (А * , B ).

2. определить нижнюю и верхнюю цену игры, заданной платёжной матрицей

Р = 0,9 0,7 0,8

Таблица 3.

А i B j

Имеет ли игра седловую точку?

Решение. Все расчёты удобно проводить в таблице, к которой, кроме матрицы Р, введены столбец? i и строка? j (табл. 3). Анализируя строки матрицы (стратегии игрока А ), заполняем столбец? i : ? 1 = 0,5, ? 2 = 0,7, ? 3 = 0,6 - минимальные числа в строках 1, 2, 3. Аналогично? 1 = 0,9, ? 2 = 0,7, ? 3 = 0,8 - максимальные числа в столбцах 1, 2, 3 соответственно.

Нижняя цена игры? = ? i = max (0,5; 0,7; 0,6) = 0,7 (наибольшее число в столбце ? i ) и верхняя цена игры? = ? j = min(0,9; 0,7; 0,8) = 0,7 (наименьшее число в строке? j ). Эти значения равны, т.е. ? = ?, и достигаются на одной и той же паре стратегий (А 2 , В 2). Следовательно, игра имеет седловую точку (А 2 , В 2) и цена игры = 0,7.

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса