Подпишись и читай
самые интересные
статьи первым!

«Количество теплоты. Удельная теплоёмкость. Формула количества теплоты

Количество теплоты входит в математическую формулировку первого начала термодинамики, которую можно записать как Q = A + Δ U {\displaystyle Q=A+\Delta U} . Здесь Δ U {\displaystyle \Delta U} - изменение внутренней энергии системы, Q {\displaystyle Q} - количество теплоты, переданное системе, а A {\displaystyle A} - работа, совершённая системой. Однако определение теплоты должно указывать способ её измерения безотносительно к первому началу. Так как теплота - это энергия переданная в ходе теплообмена, для измерения количества теплоты необходимо пробное калориметрическое тело. По изменению внутренней энергии пробного тела можно будет судить о количестве теплоты, переданном от системы пробному телу. Без использования пробного тела первое начало теряет смысл содержательного закона и превращается в бесполезное для расчётов определение количества теплоты.

Пусть в системе, состоящей из двух тел X {\displaystyle X} и Y {\displaystyle Y} , тело Y {\displaystyle Y} (пробное) заключено в жёсткую адиабатическую оболочку. Тогда оно не способно совершать макроскопическую работу , но может обмениваться энергией (то есть теплотой) с телом X {\displaystyle X} . Предположим, что тело X {\displaystyle X} также почти полностью заключено в адиабатическую, но не жёсткую оболочку, так что оно может совершать механическую работу, но обмениваться теплотой может лишь с Y {\displaystyle Y} . Количеством теплоты , переданным телу X {\displaystyle X} в некотором процессе, называется величина Q X = − Δ U Y {\displaystyle Q_{X}=-\Delta U_{Y}} , где Δ U Y {\displaystyle \Delta U_{Y}} - изменение внутренней энергии тела Y {\displaystyle Y} . Согласно закону сохранения энергии , полная работа, выполненная системой, равна убыли полной внутренней энергии системы двух тел: A = − Δ U x − Δ U y {\displaystyle A=-\Delta U_{x}-\Delta U_{y}} , где A {\displaystyle A} - макроскопическая работа, совершенная телом X {\displaystyle X} , что позволяет записать это соотношение в форме первого начала термодинамики: Q = A + Δ U x {\displaystyle Q=A+\Delta U_{x}} .

Виды энергии :
Механическая Потенциальная
Кинетическая
♦ › Внутренняя
Электромагнитная Электрическая
Магнитная
Химическая
Ядерная
G {\displaystyle G} Гравитационная
∅ {\displaystyle \emptyset } Вакуума
Гипотетические:
Тёмная
См.также: Закон сохранения энергии

Таким образом, вводимое в феноменологической термодинамике количество теплоты может быть измерено посредством калориметрического тела (об изменении внутренней энергии которого можно судить по показанию соответствующего макроскопического прибора). Из первого начала термодинамики следует корректность введённого определения количества теплоты, то есть независимость соответствующей величины от выбора пробного тела Y {\displaystyle Y} и способа теплообмена между телами. При таком определении количества теплоты первое начало становится содержательным законом, допускающим экспериментальную проверку, так как все три величины, входящие в выражение для первого начала, могут быть измерены независимо .

Неравенство Клаузиуса. Энтропия

Предположим, что рассматриваемое тело может обмениваться теплотой лишь с N {\displaystyle N} бесконечными тепловыми резервуарами, внутренняя энергия которых столь велика, что при рассматриваемом процессе температура каждого остаётся строго постоянной. Предположим, что над телом был совершён произвольный круговой процесс, то есть по окончании процесса оно находится абсолютно в том же состоянии, что и в начале. Пусть при этом за весь процесс оно заимствовало из i-го резервуара, находящегося при температуре T i {\displaystyle T_{i}} , количество теплоты Q i {\displaystyle Q_{i}} . Тогда верно следующее неравенство Клаузиуса :

∘ ∑ i = 1 N Q i T i ⩽ 0. {\displaystyle \circ \sum _{i=1}^{N}{\frac {Q_{i}}{T_{i}}}\leqslant 0.}

Здесь ∘ {\displaystyle \circ } обозначает круговой процесс. В общем случае теплообмена со средой переменной температуры неравенство принимает вид

∮ ⁡ δ Q (T) T ⩽ 0. {\displaystyle \oint {\frac {\delta Q(T)}{T}}\leqslant 0.}

Здесь δ Q (T) {\displaystyle \delta Q(T)} - количество теплоты, переданное участком среды с (постоянной) температурой T {\displaystyle T} . Это неравенство применимо для любого процесса, совершаемого над телом. В частном случае квазистатического процесса оно переходит в равенство. Математически это означает, что для квазистатических процессов можно ввести функцию состояния, называемую энтропией , для которой

S = ∫ δ Q (T) T , {\displaystyle S=\int {\frac {\delta Q(T)}{T}},} d S = δ Q T . {\displaystyle dS={\frac {\delta Q}{T}}.}

Здесь T {\displaystyle T} - это абсолютная температура внешнего теплового резервуара. В этом смысле 1 T {\displaystyle {\frac {1}{T}}} является интегрирующим множителем для количества теплоты, умножением на который получается полный дифференциал функции состояния.

Для неквазистатических процессов такое определение энтропии не работает. Например, при адиабатическом расширении газа в пустоту

∫ δ Q (T) T = 0 , {\displaystyle \int {\frac {\delta Q(T)}{T}}=0,}

однако энтропия при этом возрастает, в чём легко убедиться, переведя систему в начальное состояние квазистатически и воспользовавшись неравенством Клаузиуса. Кроме того, энтропия (в указанном смысле) не определена для неравновесных состояний системы, хотя во многих случаях систему можно считать локально равновесной и обладающей некоторым распределением энтропии.

Скрытая и ощущаемая теплота

Внутренняя энергия системы, в которой возможны фазовые переходы или химические реакции, может изменяться и без изменения температуры. Например, энергия, передаваемая в систему, где жидкая вода находится в равновесии со льдом при нуле градусов Цельсия, расходуется на плавление льда, но температура при этом остаётся постоянной, пока весь лёд не превратится в воду. Такой способ передачи энергии традиционно называется «скрытой» или изотермической теплотой (англ. latent heat ), в отличие от «явной», «ощущаемой» или неизотермической теплоты (англ. sensible heat ), под которой подразумевается процесс передачи энергии в систему, в результате которого изменяется лишь температура системы, но не её состав.

Теплота фазового превращения

Энергия, необходимая для фазового перехода единицы массы вещества, называется удельной теплотой фазового превращения . В соответствии с физическим процессом, имеющим место при фазовом превращении, могут выделять теплоту плавления, теплоту испарения, теплоту сублимации (возгонки), теплоту перекристаллизации и т. д. Фазовые превращения идут со скачкообразным изменением энтропии, что сопровождается выделением или поглощением тепла, несмотря на постоянство температуры.

О терминах «теплота», «количество теплоты», «тепловая энергия»

Многие понятия термодинамики возникли в связи с устаревшей теорией теплорода, которая сошла со сцены после выяснения молекулярно-кинетических основ термодинамики. С тех пор они используются и в научном, и в повседневном языке. Хотя в строгом смысле теплота представляет собой один из способов передачи энергии, и физический смысл имеет лишь количество энергии, переданное системе, слово «тепло-» входит в такие устоявшиеся научные понятия, как поток тепла, теплоёмкость, теплота фазового перехода, теплота химической реакции, теплопроводность и пр. Поэтому там, где такое словоупотребление не вводит в заблуждение, понятия «теплота» и «количество теплоты» синонимичны . Однако этими терминами можно пользоваться только при условии, что им дано точное определение, не связанное с представлениями теории теплорода, и ни в коем случае «количество теплоты» нельзя относить к числу первоначальных понятий, не требующих определения . Поэтому некоторые авторы уточняют, что во избежание ошибок теории теплорода под понятием «теплота» следует понимать именно способ передачи энергии, а количество переданной этим способом энергии обозначают понятием «количество теплоты» . Рекомендуется избегать такого термина, как «тепловая энергия», который по смыслу совпадает с внутренней энергией .

Поскольку мы ввели шкалу температур, мы можем следующим образом определить количество теплоты. Назовем калорией количество теплоты, необходимое для нагрева 1 г воды от 14° до 15° по Цельсию. Совершенно не существенно, откуда берется тепло - от удара, трения или огня. Когда вода получает 1 кал, ее температура подымается на

1 градус. Или, когда у воды отбирается 1 кал, температура 1 г воды уменьшается на 1 градус по шкале Цельсия. Таким образом, стандартное количество теплоты определяется с помощью единицы изменения температуры и массы стандартного вещества (воды).

При таком определении количества теплоты создается впечатление, что мы считаем ее некоей субстанцией. Мы близки к тому, чтобы сказать такую фразу: при наливании 1 калории в 1 грамм воды температура воды увеличивается на 1 градус. Используемая нами терминология сохранилась с тех времен, когда теплоту считали жидкой субстанцией (теплородом). Хотя предмет может казаться очень холодным, это не значит, что он не содержит тепла. Например, кусок льда способен нагреть кусок сухого льда, причем сам он будет при этом охлаждаться. Куском же сухого льда можно повысить температуру жидкого гелия. (Есть ли у подобной последовательности предел?)

Одна калория тепла не обязательно изменит температуру 1 грамма какого-либо вещества, отличного от воды, на 1 градус. Например, 1 г меди нагревается на 10,9°, если его снабдить 1 кал тепла. Эта

относительная способность различных веществ поглощать различные количества тепла при увеличении их температуры на одну и ту же величину называется удельной теплоемкостью вещества (одно вещество поглощает больше тепла, чем другое, причем их температуры изменяются на одну и ту же величину). Она определяется как количество калорий, необходимое для увеличения температуры 1 г вещества на 1 градус по шкале Цельсия. Например, удельная теплоемкость меди равна

Многие вещества обладают тем свойством, что их удельные теплоемкости остаются практически постоянными при изменении температуры в широких пределах. Так, 1 кал тепла увеличивает температуру 1 г воды приблизительно на 1° независимо от ее начальной температуры.

Фиг. 358. При таянии 1 г льда поглощает 80 кал; 1 г воды поглощает 100 кал при нагревании его от 0° до 100 С. Для превращение 1 г. воды при 100 °С в пар требуется 540 кал. Поскольку удельные теплоемкости льда и пара примерно вдвое меньше теплоемкости воды, при нагревании их требуется меньше теплоты, чем при нагревании, воды.

Однако в точках замерзания или кипения, как правила, вещества поглощают сравнительно большое количества теплоты, а температура их при этом не изменяется. Например, чтобы расплавить лед при 0 С, требуется 80 кал на 1 г льда. Чтобы выпарить 1 г кипящей воды, необходимо 540 кал. Поэтому плавающие в воде кубики льда поддерживают в ней температуру 0 С, ибо любое тепло, которое поступает в систему вода - лед, идет на таяние льда, а отток тепла вызывает замерзание воды, но в обоих случаях не происходит изменения температуры (фиг. 358).

Теплота является сохраняющейся величиной (не создается и не уничтожается) только в изолированных системах, т. е. системах, откуда тепло не выходит и куда оно не входит. Если опустить нагретую

ложку в изолированный сосуд с холодной водой, то ложка будет охлаждаться, а вода нагреваться до тех пор, пока их температуры не сравняются. При данных массах ложки и воды и заданных начальных температурах конечная температура всегда будет одной и той же, как будто полное тепло так распределяется между всеми частями системы, что уравнивает их температуры (т. е. наступает тепловое равновесие).

Для системы, показанной на фиг. 359;

Если ложка медная (удельная теплоемкость С), ее масса равна начальная температура 100° С, а масса воды равна и ее начальная температура 20° С, то тепло, потерянное ложкой а тепло, полученное водой где Т - окончательная температура системы. Следовательно,

Тот факт, что тела нагреваются при соударениях или трении друг о друга, послужил, вероятно, причиной тому, что теплоту издавна считали как-то связанной с движением. В 1620 г. Фрэнсис Бэкон заявил, что «Теплота сама по себе.~ есть движение и ничего более» . Он пришел к такому заключению., наблюдая, как возникает тепло при столкновениях твердых тел или трении их друг о друга. Позднее Роберт Бойль и Роберт Гук высказывали такую же идею. Однако в те времена она не имела большого успеха, так как никто не мог объяснить, почему, если теплота есть движение, оно сохраняется в экспериментах, подобных описанному выше, в которых смешивались различные вещества при различных температурах в термически изолированных сосудах.

В восемнадцатом веке появилась теория, согласно которой теплота считалась тонким упругим флюидом, частицы которого отталкиваются друг от друга, но притягиваются частицами обычных веществ. Этот флюид получил название caloriG - теплород («caloric» - слово, придуманное позднее, в 1787 г., Лавуазье), а теория, описывающая теплоту в виде материальной субстанции, - название материальной, или субстанциональной, теории теплоты.

В основе материальной теории лежала мысль о том, что теплота сохраняется. Большинство наблюдений и экспериментов тех времен проводилось при весьма специфических условиях, при которых полное количество теплоты (в том смысле, как тогда было принято) сохранялось, из чего и делался вывод, что теплота - сохраняющаяся величина. Было очень удобно считать, что теплота есть субстанция, которая не исчезает и не возникает из ничего, но перетекает от одного тела к другому. Частицы вещества, если считать, что они не могут проникать друг сквозь друга, не могут находиться между собой в контакте, несмотря на взаимное притяжение. (Иначе вещества нельзя было бы сжимать.) Поэтому между частицами должна действовать какая-то уравновешивающая притяжение сила, и эта сила была приписана действию теплорода. Из-за того, что частицы теплорода взаимно отталкиваются, теплота должна перетекать от нагретого тела к холодному. Согласно этой теории, состояние вещества - твердое, жидкое или газообразное - определяется количеством теплорода, входящего в его состав. Когда вещество содержит много теплорода, оно становится газообразным. Из-за взаимного расталкивания частиц теплорода наличие большого его количества в веществе приводит к тому, что силы расталкивания превосходят силы притяжения между частицами вещества и вынуждают последние оставаться свободными. Считалось, что при охлаждении тел теплород покидает их, что согласовывалось с сокращением большинства тел при охлаждении. Твердые и жидкие тела содержат меньше теплорода, чем газообразные, и поэтому занимают меньшие объемы.

Хотя материальная теория давно уже оставлена, некоторые ее термины сохранились в современной науке о теплоте, особенно в тех разделах, где рассматриваются потоки и перенос тепла. Мы по-прежнему говорим, что тепло течет, а тело поглощает тепло. Это приводит к некоторой путанице, поскольку мы говорим о теплоте как о какой-то субстанции, даже если мы знаем, что на самом деле это не так.

Бенджамин Томпсон, граф Румфорд (1753-1814), американский эмигрант, которому посчастливилось провести свои последние годы в Париже, автор почти картезианского изречения: «Ясно, что в философских исследованиях нет ничего более опасного, чем принимать что-либо на веру, как бы правдоподобно оно ни выглядело, пока оно не будет доказано прямым и решающим экспериментом» и человек легендарной энергии, выбрал в качестве одного из своих занятий «науку о Теплоте, науку, несомненно, первостепенной важности для человечества!» . Его интерес к «этому удивительному предмету» возник, по его словам, следующим образом:

«Обедая, я часто замечал, что некоторые блюда сохраняют свое тепло гораздо дольше других, а яблочные пироги и яблоки с миндалем (одно из любимых английских кушаний) оставались горячими удивительно долго. Сильно пораженный такой необычной способностью сохранять теплоту, которой обладали яблоки, я часто размышлял о ней; и, обжигая яблоками рот или встречая другие блюда с такими же свойствами, я всегда пытался, но все напрасно, найти хоть какое-нибудь удовлетворительное объяснение этому удивительному явлению» .

То, что Румфорд обжигал свой рот рисовым супом, а позднее - руки в горячих банях Неаполя, не уменьшало его интерес к этой проблеме. Наоборот, он решился провести почти классическую серию экспериментов, направленную против материальной теории теплоты.

Можно утверждать, что если теплород - вещество, то он должен обладать основным свойством любого вещества и иметь массу. В своих экспериментах Румфорд, к своему удовлетворению, показал, что «все попытки обнаружить влияние тепла на веса тел бесплодны». Однако его доказательство невесомости теплорода не могло смутить сторонников материальной теории. Они могли возразить, что теплород, как в более ранние времена небесная субстанция, не является обычным веществом, и поэтому он не обязан подчиняться гравитационным силам.

Совершенно случайно («чисто случайно мне пришлось заниматься экспериментами, о которых я собираюсь рассказать») Румфорд заинтересовался вопросом о получении тепла с помощью трения.

«Позднее, заведуя сверлением пушечных стволов в мастерских военного арсенала в Мюнхене, я был сильно поражен тем значительным количеством тепла, которое за короткое время получает медный ствол при сверлении, и еще большим количеством тепла (гораздо большим, как я выяснил из эксперимента, чем тепло, требуемое для закипания воды), которое получают металлические стружки, отделяемые от ствола сверлом» .

С помощью материальной теории теплоты было трудно объяснить, откуда берется такое большое количество теплорода. При желании, конечно, можно было ввести гипотезу, что силы пцитяжения между молекулами металла и частицами теплорода уменьшаются, когда металл превращается в стружку, в результате чего теплород освобождается и проявляется в виде теплоты.

Однако при сверлении запас тепла казался неистощимым. Этого было достаточно, чтобы убедить Румфорда:

«...мне кажется чрезвычайно трудно, если не совершенно невозможно, выдвинуть хоть какую-нибудь разумную идею, объясняющую то, что возбуждалось и передавалось в этих экспериментах, чем-либо отличным от движения» .

В фокусе внимания нашей статьи - количество теплоты. Мы рассмотрим понятие внутренней энергии, которая трансформируется при изменении этой величины. А также покажем некоторые примеры применения расчетов в человеческой деятельности.

Теплота

С любым словом родного языка у каждого человека есть свои ассоциации. Они определяются личным опытом и иррациональными чувствами. Что обычно представляется при слове «теплота»? Мягкое одеяло, работающая батарея центрального отопления зимой, первый солнечный свет весной, кот. Или взгляд матери, утешительное слово друга, вовремя проявленное внимание.

Физики подразумевают под этим совершенно конкретный термин. И очень важный, особенно в некоторых разделах этой сложной, но увлекательной науки.

Термодинамика

Рассматривать количество теплоты в отрыве от простейших процессов, на которые опирается закон сохранения энергии, не стоит - ничего не будет понятно. Поэтому для начала напомним их читателям.

Термодинамика рассматривает любую вещь или объект как соединение очень большого количества элементарных частей - атомов, ионов, молекул. Ее уравнения описывают любое изменение коллективного состояния системы как целого и как части целого при изменении макропараметров. Под последними понимаются температура (обозначается как Т), давление (Р), концентрация компонентов (как правило, С).

Внутренняя энергия

Внутренняя энергия - довольно сложный термин, в смысле которого стоит разобраться прежде, чем говорить о количестве теплоты. Он обозначает ту энергию, которая изменяется при увеличении или уменьшении значения макропараметров объекта и не зависит от системы отсчета. Является частью общей энергии. Совпадает с ней в условиях, когда центр масс исследуемой вещи покоится (то есть отсутствует кинетическая составляющая).

Когда человек чувствует, что некоторый объект (скажем, велосипед) нагрелся или охладился, это показывает, что все молекулы и атомы, составляющие данную систему, испытали изменение внутренней энергии. Однако неизменность температуры не означает сохранение этого показателя.

Работа и теплота

Внутренняя энергия любой термодинамической системы может преобразоваться двумя способами:

  • посредством совершения над ней работы;
  • при теплообмене с окружающей средой.

Формула этого процесса выглядит так:

dU=Q-А, где U - внутренняя энергия, Q - теплота, А - работа.

Пусть читатель не обольщается простотой выражения. Перестановка показывает, что Q=dU+А, однако введение энтропии (S) приводит формулу к виду dQ=dSxT.

Так как в данном случае уравнение принимает вид дифференциального, то и первое выражение требует того же. Далее, в зависимости от сил, действующих в исследуемом объекте, и параметра, который вычисляется, выводится необходимое соотношение.

Возьмем в качестве примера термодинамической системы металлический шарик. Если на него надавить, подбросить вверх, уронить в глубокий колодец, то это значит совершить над ним работу. Чисто внешне все эти безобидные действия шарику никакого вреда не причинят, но внутренняя энергия его изменится, хоть и очень ненамного.

Второй способ - это теплообмен. Теперь подходим к главной цели данной статьи: описанию того, что такое количество теплоты. Это такое изменение внутренней энергии термодинамической системы, которое происходит при теплообмене (смотрите формулу выше). Оно измеряется в джоулях или калориях. Очевидно, что если шарик подержать над зажигалкой, на солнце, или просто в теплой руке, то он нагреется. А дальше можно по изменению температуры найти количество теплоты, которое ему было при этом сообщено.

Почему газ - лучший пример изменения внутренней энергии, и почему из-за этого школьники не любят физику

Выше мы описывали изменения термодинамических параметров металлического шарика. Они без специальных приборов не очень заметны, и читателю остается поверить на слово о происходящих с объектом процессах. Другое дело, если система - газ. Надавите на него - это будет видно, нагрейте - поднимется давление, опустите под землю - и это можно с легкостью зафиксировать. Поэтому в учебниках чаще всего в качестве наглядной термодинамической системы берут именно газ.

Но, увы, в современном образовании реальным опытам уделяется не так много внимания. Ученый, который пишет методическое пособие, отлично понимает, о чем идет речь. Ему кажется, что на примере молекул газа все термодинамические параметры будут нужным образом продемонстрированы. Но ученику, который только открывает для себя этот мир, скучно слушать про идеальную колбу с теоретическим поршнем. Если бы в школе существовали настоящие исследовательские лаборатории и на работу в них выделялись часы, все было бы по-другому. Пока, к сожалению, опыты только на бумаге. И, скорее всего, именно это становится причиной того, что люди считают данный раздел физики чем-то чисто теоретическим, далеким от жизни и ненужным.

Поэтому мы решили в качестве примера привести уже упоминаемый выше велосипед. Человек давит на педали - совершает над ними работу. Помимо сообщения всему механизму крутящего момента (благодаря которому велосипед и перемещается в пространстве), изменяется внутренняя энергия материалов, из которых сделаны рычаги. Велосипедист нажимает на ручки, чтобы повернуть, - и опять совершает работу.

Внутренняя энергия внешнего покрытия (пластика или металла) увеличивается. Человек выезжает на полянку под яркое солнце - велосипед нагревается, изменяется его количество теплоты. Останавливается отдохнуть в тени старого дуба, и система охлаждается, теряя калории или джоули. Увеличивает скорость - растет обмен энергией. Однако расчет количества теплоты во всех этих случаях покажет очень маленькую, незаметную величину. Поэтому и кажется, что проявлений термодинамической физики в реальной жизни нет.

Применение расчетов по изменению количества теплоты

Вероятно, читатель скажет, что все это весьма познавательно, но зачем же нас так мучают в школе этими формулами. А сейчас мы приведем примеры, в каких областях человеческой деятельности они нужны непосредственно и как это касается любого в его повседневности.

Для начала посмотрите вокруг себя и посчитайте: сколько предметов из металла вас окружают? Наверняка больше десяти. Но прежде чем стать скрепкой, вагоном, кольцом или флешкой, любой металл проходит выплавку. Каждый комбинат, на котором перерабатывают, допустим, железную руду, должен понимать, сколько требуется топлива, чтобы оптимизировать расходы. А рассчитывая это, необходимо знать теплоемкость металлосодержащего сырья и количество теплоты, которое ему необходимо сообщить, чтобы произошли все технологические процессы. Так как выделяемая единицей топлива энергия рассчитывается в джоулях или калориях, то формулы нужны непосредственно.

Или другой пример: в большинстве супермаркетов есть отдел с замороженными товарами - рыбой, мясом, фруктами. Там, где сырье из мяса животных или морепродуктов превращается в полуфабрикат, должны знать, сколько электричества употребят холодильные и морозильные установки на тонну или единицу готового продукта. Для этого следует рассчитать, какое количество теплоты теряет килограмм клубники или кальмаров при охлаждении на один градус Цельсия. А в итоге это покажет, сколько электричества потратит морозильник определенной мощности.

Самолеты, пароходы, поезда

Выше мы показали примеры относительно неподвижных, статичных предметов, которым сообщают или у которых, наоборот, отнимают определенное количество теплоты. Для объектов, в процессе работы движущихся в условиях постоянно меняющейся температуры, расчеты количества теплоты важны по другой причине.

Есть такое понятие, как "усталость металла". Включает оно в себя также и предельно допустимые нагрузки при определенной скорости изменения температуры. Представьте, самолет взлетает из влажных тропиков в замороженные верхние слои атмосферы. Инженерам приходится много работать, чтобы он не развалился из-за трещин в металле, которые появляются при перепаде температуры. Они ищут такой состав сплава, который способен выдержать реальные нагрузки и будет иметь большой запас прочности. А чтобы не искать вслепую, надеясь случайно наткнуться на нужную композицию, приходится делать много расчетов, в том числе и включающих изменения количества теплоты.

Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.

– это изменение внутренней энергии тела в процессе теплопередачи без совершения работы. Количество теплоты обозначают буквой Q .

Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах - джоулях (Дж ), как и всякий вид энергии.

В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии - калория (кал ), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты - соотношение между калорией и джоулем: 1 кал = 4,2 Дж .

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.

Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.

– это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой с . Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг °К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С . В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Q , необходимое для нагревания тела массой m от температуры t 1 °С до температуры t 2 °С , равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

Q = c ∙ m (t 2 — t 1)

По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

Это конспект по теме «Количество теплоты. Удельная теплоёмкость» . Выберите дальнейшие действия:

  • Перейти к следующему конспекту:

На этом уроке мы продолжим изучение внутренней энергии тела, а конкретнее - способов её изменения. И предметом нашего внимания на этот раз станет теплообмен. Мы вспомним, на какие виды он разделяется, в чём измеряется, и по каким соотношениям можно вычислить количество теплоты, переданное в результате теплообмена, также мы дадим определение удельной теплоёмкости тела.

Тема: Основы термодинамики
Урок: Количество теплоты. Удельная теплоемкость

Как мы уже знаем из младших классов, и как мы вспомнили на прошлом уроке, существует два способа изменить внутреннюю энергию тела: выполнить над ним работу или передать ему некое количество теплоты. О первом способе нам уже известно из, опять-таки, прошлого урока, но и о втором мы достаточно много говорили в курсе восьмого класса.

Процесс передачи теплоты (количества теплоты или энергии) без совершения работы называется теплообменом или теплопередачей. Разделяется он по механизмам передачи, как мы знаем, на три вида:

  1. Теплопроводность
  2. Конвекция
  3. Излучение

В результате одного из этих процессов телу передаётся некое количество теплоты, на значение которого, собственно, и меняется внутренняя энергия. Охарактеризуем эту величину.

Определение. Количество теплоты . Обозначение - Q. Единицы измерения - Дж. При изменении температуры тела (что эквивалентно изменению внутренней энергии) количество теплоты, затраченное на это изменение, можно вычислить по формуле:

Здесь: - масса тела; - удельная теплоёмкость тела; - изменение температуры тела.

Причём, если , то есть при охлаждении, говорят, что тело отдало некоторое количество теплоты, или же телу передали отрицательное количество теплоты. Если же , то есть наблюдается нагрев тела, количество переданной теплоты, конечно же, будет положительным.

Особое внимание следует обратить на величину удельной теплоёмкости тела.

Определение. Удельная теплоёмкость - величина, численно равная количеству теплоты, которую необходимо передать, чтобы нагреть один килограмм вещества на один градус. Удельная теплоёмкость - индивидуальная величина для каждого отдельного вещества. Поэтому это табличная величина, заведомо известная при условии, что нам известно, порции какого вещества передаётся тепло.

Единицу измерения удельной теплоёмкости в системе СИ можно получить из вышеприведённого уравнения:

Таким образом:

Рассмотрим теперь случаи, когда передача некого количества теплоты приводит к изменению агрегатного состояния вещества. Напомним, что такие переходы называются плавлением, кристаллизацией, испарением и конденсацией.

При переходе от жидкости к твёрдому телу и наоборот количество теплоты высчитывается по формуле:

Здесь: - масса тела; - удельная теплота плавления тела (количество теплоты, необходимое для полного плавления одного килограмма вещества).

Для того чтобы расплавить тело, ему необходимо передать некое количество теплоты, а при конденсации тело само отдаёт в окружающую среду некое количество теплоты.

При переходе от жидкости к газообразному телу и наоборот количество теплоты высчитывается по формуле:

Здесь: - масса тела; - удельная теплота парообразования тела (количество теплоты, необходимое для полного испарения одного килограмма вещества).

Для того чтобы испарить жидкость, ей необходимо передать некое количество теплоты, а при конденсации пар сам отдаёт в окружающую среду некое количество теплоты.

Следует подчеркнуть также, что и плавление с кристаллизацией, и испарение с конденсацией проходят при постоянной температуре (температура плавления и кипения соответственно) (рис. 1).

Рис. 1. График зависимости температуры (в градусах Цельсия) от полученного количества вещества ()

Отдельно стоит отметить вычисление количества теплоты, выделяющееся при сгорании некоторой массы топлива:

Здесь: - масса топлива; - удельная теплота сгорания топлива (количество теплоты, выделяющееся при сгорании одного килограмма топлива).

Особое внимание нужно обратить на тот факт, что помимо того, что для разных веществ удельные теплоёмкости принимают разные значения, этот параметр может быть различным и для одного и того же вещества при различных условиях. Например, выделяют разные значения удельных теплоёмкостей для процессов нагревания, протекающих при постоянном объёме () и для процессов, протекающих при постоянном давлении ().

Различают также молярную теплоёмкость и просто теплоёмкость.

Определение. Молярная теплоёмкость () - количество теплоты, необходимое для того, чтобы нагреть один моль вещества на один градус.

Теплоёмкость (C ) - количество теплоты, необходимое, чтобы нагреть на один градус порцию вещества определённой массы. Связь теплоёмкости с удельной теплоёмкостью:

На следующем уроке мы рассмотрим такой важный закон, как первый закон термодинамики, который связывает изменение внутренней энергии с работой газа и количеством переданной теплоты.

Список литературы

  1. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. - М.: Дрофа, 2010.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. - М.: Дрофа, 2010.
  1. Словари и энциклопедии на Академике ().
  2. Tt.pstu.ru ().
  3. Elementy.ru ().

Домашнее задание

  1. Стр. 83: № 643-646. Физика. Задачник. 10-11 классы. Рымкевич А.П. - М.: Дрофа, 2013. ()
  2. Как связаны между собой молярная и удельная теплоёмкости?
  3. Почему иногда поверхности окон запотевают? С какой стороны окон это происходит?
  4. В какую погоду быстрее высыхают лужи: в спокойную или в ветреную?
  5. *На что затрачивается теплота, полученная телом при плавлении?
Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса