Подпишись и читай
самые интересные
статьи первым!

Электрический реактивный двигатель. Электрический ракетный двигатель. Особенности двигательных установок с малой тягой

Многих металлов.

Продолжая начатый разговор, мы узнаем, что такое электрический реактивный двигатель , каковы принципы его работы и сфера применения, и даже получим ответ на вопрос, возможен ли полет на в ближайшее время…

Для начала вернемся к ударным взрывам металлов . Важнейшим условием этого процесса является скорость металла.

Если для урана критическая скорость 1 500 м/с, для железа она превышает 4 000 м/с.

Поэтому от некоторых метеоритов, падающих на землю с такой или даже большей скоростью, не остается и следа. Они превращаются в тончайшую …

На такую особенность обратил внимание еще в 1929 году знаменитый создатель наших двигателей и ракет Валентин Петрович Глушко.

Фото 1. Академик Валентин Петрович Глушко

Он написал статью под весьма интригующим заголовком «Металл как взрывчатое вещество».

В первых же ее строках автор сказал, что речь пойдет не об использовании металла в качестве взрывчатки, а о том, что при пропускании достаточно сильного импульса электрического тока через металлическую проволоку может произойти взрыв.

Температура при этом повышается до 300 000 градусов. Энергия такого взрыва превышает во много раз энергию взрыва самого мощного взрывчатого вещества, взятого в количестве, равном массе проволоки.

При этом сама энергия превышает энергию вызвавшего его импульса тока.

Электрический реактивный двигатель

Энергия такого взрыва была использована В.П. Глушко в миниатюрном электрическом реактивном двигателе (ЭРД) , разработанным в начале 1930-х годов.

Двигатель легко умещался на ладони.

В него поступала металлическая проволока и подавались электрические импульсы, превращающие ее в пар.

Фото 2. Электрический реактивный двигатель (ЭРД), созданный В.П. Глушко в 1929-1933 гг.

Этот пар выходил через специальное сопло со скоростью в несколько десятков тысяч метров в секунду.

Чтобы за 4 месяца набрать скорость 30 км/с, двигатель должен потреблять мощность… 300 Вт.

Не так много, в 3 раза меньше мощности утюга! Но у утюга есть розетка, а где взять розетку в ?

В качестве источника энергии для ракеты, оснащенной ЭРД, В.П. Глушко предложил использовать фотоэлементы.

Ракета, оснащенная такими двигателями, самостоятельно выйти в космос не может. Для старта должен применяться другой двигатель.

Но после выхода в космическое пространство «солнечная» ракета, оснащенная ЭРД, могла бы за несколько суток набрать такую скорость, которая недоступна для ракет любых других типов.

Подобная схема полета на Марс ныне рассматривается в российском проекте высадки космонавтов на Красную планету.

Отличительной особенностью реактивных электрических двигателей состоит в том, что источник энергии и рабочее вещество разделены, а передача энергии от источника к рабочему веществу осуществляется с помощью электромагнитных взаимодействий. Это позволяет получить высокие скорости истечения рабочего вещества. Это, в свою очередь, делает такой класс двигателей наиболее экономичным при выполнении транспортных работ в космосе. Вниманию посетителей сайта предлагается краткое описание некоторых двигателей этого класса.

Рисунок 22 - Электрический реактивный двигатель

Среди класса электрореактивных двигателей основное внимание уделяется т.н. плазменно-ионному двигателю.

Отличительная его особенность в том, что в нём используется разряд с осциллирующими электронами. Двигаясь в продольном магнитном поле сравнительно небольшой величины, электроны не могут сразу попасть на наружный кольцевой электрод - анод и участвуют в неоднократных ионизирующих столкновениях. Ускорение ионов происходит в продольном электрическом поле, а для компенсации на выходе ускорителя их объёмного заряда используется катод - компенсатор.

Плазменно-ионные двигатели обладают высоким КПД в широком диапазоне удельных импульсов. Они характеризуются, к тому же, низкими значениями плотности тяги. Т.е. удельная масса двигателя выше.

Плазменно-ионные двигатели прошли модельные испытания, однако полномасштабные испытания до сих пор не выполнены.

Для решения задач управления и ориентации космических аппаратов наиболее удобными оказываются импульсные плазменные двигатели. И наиболее перспективные в этом классе электрореактивных двигателей являются эрозионные плазменные двигатели.

В этих двигателях плазменный сгусток создаётся при пропускании большого тока, возникающего при разряде электрического конденсатора вдоль поверхности находящегося между электродами диэлектрика, материал которого испаряется, ионизуется и ускоряется под действием электромагнитных сил или газодинамических сил.

Импульсный плазменный двигатель обладает тем преимуществом, что возможно большое число включений (до 109); малым значением одного импульса (около 100 мкН*с); отсутствием импульса последействия.

Электронагревные реактивные двигатели отличаются тем, что электрическая энергия в них расходуется на нагрев и ускорение рабочего вещества при прохождении его через теплообменник. У двигателей этого типа минимальные энергетические затраты на создание тяги. В результате экспериментальных исследований было установлено, что оптимальным рабочим веществом для них является гидразин (H2N)2.

Рисунок 23 - Электрический реактивный двигатель

Гидразин представляет собой однокомпонентное эндотермическое топливо, поэтому при его химическом разложении на водород и азот в присутствии катализатора выделяется энергия. Это позволило создать целый особый класс электрореактивных двигателей - каталитические двигатели. Существуют и термокаталитические двигатели, в которых более простые катализаторы, выполненные в форме опресованных проволочных спиралей, обладают большим ресурсом.

Наименьшие полученные значения тяги для таких двигателей составляют порядка 10 мН.

Область применения электрореактивных двигателей:

  • 1. Управление движением космических кораблей.
  • 2. Корректировка орбиты, компенсация торможения аппаратов в верхних слоях атмосферы, перевод с одной орбиты на другую
  • 3. Транспортные операции, связанные с осуществлением полётов к Луне и другим планетам Системы

Основные характеристики плазменно-ионных двигателей:

  • 1. Электрическая потребляемая мощность - 1 кВт.
  • 2. Создаваемая тяга - 27 мН
  • 3. Скорость истечения - 42 км/с
  • 4. Тяговый КПД - 67%
  • 5. Напряжение - 2800 В
  • 6. Рабочее вещество - ртуть

Этот обширный класс двигателей объединяет различные типы двигателей, которые очень интенсивно разрабатываются в настоящее время. Разгон рабочего тела до определенной скорости истечения производится за счет электрической энергии. Энергия получается от атомной или солнечной электростанции, находящейся на борту космического корабля (в принципе даже от химической батареи). Мыслимы многочисленные типы бортовых энергетических установок .

Схемы разрабатываемых электрических двигателей чрезвычайно разнообразны. Мы рассмотрим три основные группы электрических двигателей , различающиеся по способу, с помощью которого происходит выброс рабочего тела из ракеты. (Возможны, однако, и иные способы классификации электрических двигателей

Электротермические двигатели. Эти двигатели, как и все рассматривавшиеся нами до сих пор, относятся к тепловым. Нагретое до высокой температуры рабочее тело (водород) превращается в плазму - электрически нейтральную смесь

положительных ионов и электронов. Методы электрического нагрева могут быть различны: нагрев в электрической дуге (рис. 10), с помощью вольфрамовых нагревательных элементов, посредством электрического разряда и другие

Рис. 10. Схема электродугового двигателя

При лабораторных испытаниях электродуговых двигателей достигнута скорость истечения порядка Если удастся осуществить магнитную изоляцию плазмы от стенок тяговой камеры, температура плазмы сможет быть очень высока и скорость истечения доведена до Реактивные ускорения в электротермических двигателях будут порядка .

Первый в мире электротермический двигатель был разработан в 1929-1933 гг. в Советском Союзе под] руководством В. П. Глушко в знаменитой Газодинамической лаборатории .

Электростатические (ионные) двигатели . В этих двигателях мы впервые сталкиваемся с разгоном рабочего тела «холодным» путем. Частицы рабочего тела (пары легко ионизуемых металлов, например рубидия или цезия) теряют свои электроны в ионизаторе и разгоняются до большой скорости в электрическом поле. Чтобы электрический заряд струи заряженных частиц позади аппарата не препятствовал дальнейшему истечению, эта струя нейтрализуется вне его выбрасыванием отнятых у атомов электронов (рис. 11).

Рис. 11. Принципиальная схема ноьного двигателя

В ионном двигателе не существует температурных ограничений. Поэтому в принципе возможно достижение сколь угодно больших скоростей истечения, вплоть до приближающихся к скорости света . Однако слишком высокие скорости истечения приходится исключить из рассмотрения, так как они потребовали бы огромной мощности электростанции на борту корабля.

Рис. 12. Схема образования движущихся плазмоидов в «импульсном» плазменном двигателе 11.18].

При этом масса двигательной установки возросла бы гораздо сильнее, чем тяга, и в результате сильно бы снизилось реактивное ускорение. Цель космического полета, его продолжительность, качество энергетической установки определяют наилучшую, оптимальную для уданной задачи скорость истечения. Она находится, по мнению одних авторов, в пределах , по мнению других, , . Ионные двигатели будут способны сообщить реактивное ускорение порядка .

Большие надежды возлагаются некоторыми специалистами на особый тип электростатических двигателей - коллоидные двигатели. В этих двигателях ускоряются большие заряженные молекулы и даже группы молекул или пылинки диаметром около 1 микрона .

Рис. 13. Схема магнитогидродинамического двигателя со скрещенными полями.

Магнитогидродинамические (электродинамические, электромагнитные, магнит -плазменные, «плазменные») двигатли . Эта группа двигателей объединяет огромное разнообразие схем, в которых плазма разгоняется до некоторой скорости истечения изменением магнитного поля или взаимодействием электрического и магнитного полей. Конкретные методы разгона плазмы, а также ее получения весьма различны. В плазменном двигателе (рис. 12) сгусток плазмы («плазмоид») разгоняется магнитным давлением . В «двигателе со скрещенными электрическим и магнитным полями» (рис. 13) через плазму,

помещенную в магнитное поле, пропускается электрический ток (плазма - хороший проводник), и в результате плазма приобретает скорость (подобно проволочной рамке с током, помещенной в магнитном поле) . Оптимальная скорость истечения для магнитогидродинамических двигателей, вероятно, будет порядка при реактивном ускорении

В лабораторных испытаниях магнитогидродинамических двигателей достигнуты скорости истечения до .

Следует отметить, что во многих случаях отнести двигатель к тому или иному классу бывает затруднительно.

Электрические двигатели с забором рабочего тела из верхней атмосферы . Летательный аппарат, движущийся в верхних слоях атмосферы, может использовать разреженную внешнюю среду в качестве рабочего тела для электрического двигателя. Подобный электрический двигатель аналогичен воздушно-реактивному двигателю в классе химических двигателей. Поступающий через воздухозаборник газ может использоваться в качестве рабочего тела или непосредственно, или после накопления (и, возможно, сжижения) его в баках. Возможен также вариант, при котором в баках одного летательного аппарата будет накапливаться рабочее тело и перекачиваться затем в баки другого аппарата.

Важным преимуществом всех типов электрических двигателей является простота регулировки тяги. Серьезной трудностью - необходимость освобождения от избытка тепла, выделяемого ядерным реактором. Этот избыток не уносится рабочим телом и не отдается окружающей среде, которая практически отсутствует в мировом пространстве. Освободиться от него можно лишь с помощью радиаторов, имеющих большую поверхность.

В 1964 г. в США было проведено первое успешное испытание в течение 31 мин ионного двигателя, установленного на контейнере, запущенном на баллистическую траекторию. В реальных условиях космоса ионные и плазменные двигатели быливпервые испытаны на советском корабле «Восход-1» и советской станции «Зонд-2», запущенных в 1964 г. («Зонд-2» - всторону Марса) ; наряду с обычными они использовались в системах ориентации. В апреле 1965 г. ионный двигатель на жидком цезии испытывался вместе с ядерным реактором «Снеп-10А» на американском спутнике Земли, развивая тягу (вместо Цезиевые ионные двигатели с расчетной регулируемой тягой и электротермические двигатели, использующие в качестве рабочего тела жидкий аммиак и развивающие тягу до испытывались с переменным успехом на спутниках серии запускавшихся в США с 1966 г.

Изобретение относится к области создания электрических ракетных двигателей. Предлагается устройство электрического ракетного двигателя, которое так же, как известный тип двигателя с однородным стационарным плазменным разрядом (стационарные плазменные двигатели - СПД), содержит сверхзвуковые сопла, канал магнитогидродинамического ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода, катушку возбуждения магнитного поля, подключенную к источнику ЭДС. В отличие от СПД предлагаемый двигатель использует неоднородный газоплазменный поток рабочего тела. Для создания плазменных неоднородностей в форме плазменных колец двигатель содержит импульсный высокочастотный источник напряжения, подключенный к дополнительной катушке, установленной на входе канала ускорителя. Поддержание разряда в плазменных кольцах, индуктивно связанных с катушкой возбуждения магнитного поля, осуществляется источником переменной ЭДС, подключенного к катушке. Для размыкания тока в плазменных кольцах в момент их выхода из канала магнитодинамического ускорителя на входе в диффузор двигателя установлены радиальные диэлектрические ребра. Изобретение позволяет увеличить тягу и длительность работы двигателя. 1 ил.

Изобретение относится к области создания электрических ракетных двигателей.Известен способ [I], повышающий тягу электрического ракетного двигателя, который предлагает заменить стационарный однородный плазменный разряд неоднородным газоплазменным потоком. Плазменные сгустки (Т-слои) устойчивы к развитию перегревной неустойчивости, что позволяет многократно повысить плотность рабочего тела, проходящего через канал двигателя, и таким образом пропорционально увеличить тягу. Устройство, реализующее этот способ, состоит из газодинамического сопла, канала магнитогидродинамического ускорителя прямоугольного сечения с электродными стенками, магнитной системы, создающей магнитное поле в канале ускорителя, поперечное к потоку рабочего тела, системы импульсного электродного сильноточного разряда, формирующей в потоке Т-слои, источника постоянной ЭДС, подключенной к электродам канала ускорителя. Устройство должно обеспечивать ускорение потока за счет электродинамической силы, действующей в объеме Т-слоев, которые в свою очередь действуют на газовый поток как ускоряющие плазменные поршни. Численное моделирование рабочего режима в канале данного устройства показало, что может достигаться скорость истечения до 50000 м/с при уровне тяги до 1000 Н.Недостатком устройства, реализующего известный способ, является использование электродов как в цепи источника, формирующего Т-слои, так и в цепи источника, обеспечивающего режим ускорения в МГД-канале. Режим протекания тока в Т-слоях является дуговым. Неизбежная дуговая эрозия электродов существенно сокращает ресурс работы двигателя (из опыта работы плазмотронов следует ожидать, что электроды обеспечат не более 100 часов непрерывной работы). Для космических аппаратов многократного использования ресурс двигателя должен быть не меньше года непрерывной работы.Известен электрический ракетный двигатель (стационарный плазменный двигатель - СПД), который используют для ускорения плазменного потока за счет электродинамического воздействия на электропроводную среду. Это устройство состоит из сверхзвуковых сопел, канала магнитогидродинамического (МГД) ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода, катушки возбуждения магнитного поля, подключенной к источнику постоянной ЭДС, системы электропитания стационарного разряда в плазме. Устройство работает по следующей схеме. По газодинамическому соплу подается газообразное рабочее тело, которое при входе в канал МГД-ускорителя попадает в область стационарного плазменного разряда, поддерживаемого системой электропитания, ионизуется и переходит в плазменное состояние. Ток в разряде протекает вдоль канала, при этом анод системы электропитания является газодинамическим соплом, а катод находится на выходе из канала. Устойчивый режим ускорения реализуется только при очень низкой плотности плазмы, при которой параметр Холла может достигать значений порядка 100. В этих условиях небольшой разрядный ток вдоль канала генерирует значительный азимутальный ток, замкнутый сам на себя. Взаимодействие азимутального тока с радиальным магнитным полем, созданном катушкой возбуждения между коаксиальными полюсами магнитопровода, порождает в объеме плазмы ускоряющую электродинамическую силу. Замкнутость основного тока без использования для этого электродов позволяет сделать ресурс работы двигателя практически неограниченным.Недостатком известного устройства является низкая плотность рабочего тела, что необходимо для обеспечения устойчивой работы двигателя. Соответственно тяга такого двигателя не превышает 0,1 Н.В основу изобретения положена задача создания электрического ракетного двигателя большой тяги при длительности непрерывной работы порядка года.Поставленная задача достигается тем, что электрический ракетный двигатель, содержащий сверхзвуковые сопла, канал магнитогидродинамического ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода, катушку возбуждения магнитного поля, подключенную к источнику ЭДС, согласно данному изобретению снабжен импульсным высокочастотным источником напряжения, подключенным к дополнительной катушке, установленной на входе канала ускорителя, и диффузором с радиальными диэлектрическими ребрами, при этом катушка возбуждения магнитного поля подключена к источнику переменной ЭДС.Изобретение поясняется чертежом, на котором представлено поперечное сечение устройства.Электрический ракетный двигатель содержит сверхзвуковые сопла 1, канал 2 магнитогидродинамического ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода 3, катушку 4 возбуждения магнитного поля, подключенную к источнику 5 переменной ЭДС, импульсный высокочастотный источник напряжения 6, подключенный к дополнительной катушке 7, установленной на входе в канал 2 ускорителя. Двигатель также содержит диффузор 8 с радиальными диэлектрическими ребрами 9.Электрический ракетный двигатель работает следующим образом.Нагретый газ (например, водород), температура которого определяется условиями бортового источника тепла, а давление - требованиями по тяге двигателя, задающими расход рабочего тела, разгоняют в сверхзвуковых соплах 1. Систему импульсного высокочастотного разряда 6 периодически включают с заданной временной скважностью, и каждое включение формирует в газовом потоке плазменный сгусток на входе канала 2 МГД ускорителя. Внешним источником переменной ЭДС создается переменный ток в катушке возбуждения 4, что порождает переменное во времени радиальное магнитное поле между полюсами коаксиального магнитопровода 3. Это генерирует вихревое электрическое поле азимутального направления. Под воздействием азимутального электрического и радиального магнитного полей из плазменных сгустков формируются самоподдерживающиеся азимутальные плазменные токовые витки (Т-слои), которые в свою очередь действуют на газовый поток как ускоряющие поршни. После канала МГД-ускорителя ускоренный поток попадает в расширяющийся канал-диффузор 8, в котором установлены радиальные диэлектрические ребра 9. Ребра обтекаются газовым потоком, но на них разрываются электрические цепи Т-слоев, что позволяет прервать электродинамическую стадию ускорения потока. В диффузоре 8, являющемся продолжением канала МГД-ускорителя, осуществляется дальнейшее ускорение газового потока за счет тепловой энергии, перешедшей из Т-слоев в поток.Было выполнено численное моделирование процесса ускорения потока водорода, содержащего Т-слои, в условиях режима, реализующего описанный способ. Показано, что предлагаемое устройство может быть реализовано со следующими параметрами, соответствующими задаче создания эффективного электрического ракетного двигателя (ЭРД):- КПД процесса трансформации электроэнергии в кинетическую энергию рабочего тела 95%;- средняя скорость потока на выходе из двигателя 40 км/с;- длина канала МГД-ускорителя 0,3 м;- средний диаметр канала МГД-ускорителя 11 см;- высота канала (расстояние между полюсами) 1 см- массовый расход рабочего тела 12 г/с;- температура водорода на входе в ЭРД 1000 К;- давление водорода на входе в ЭРД 10 4 Па;- среднее значение ЭДС источника питания ЭРД 5 кВ;- среднее значение тока в обмотке возбуждения 2 кА;- потребляемая электрическая мощность 10 МВт;- тяга двигателя 500 НПредлагаемый электрический ракетный двигатель найдет применение при создании космической транспортной системы, предназначаемой для транспортировки грузов с околоземных орбит на геостационарные, лунные и далее к планетам солнечной системы.Источники информации1. B.C. Славин, В.В. Данилов, М.В. Краев. Способ ускорения потока рабочего тела в канале ракетного двигателя, патент РФ № 2162958, F 02 K 11/00, F 03 H 1/00, 2001.2. С.Д. Гришин, Л.В. Лесков. Электрические ракетные двигатели космических аппаратов. - М.: Машиностроение, 1989, с. 163.

Формула изобретения

Электрический ракетный двигатель, содержащий сверхзвуковые сопла, канал магнитогидродинамического ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода, катушку возбуждения магнитного поля, подключенную к источнику ЭДС, отличающийся тем, что устройство снабжено импульсным высокочастотным источником напряжения, подключенным к дополнительной катушке, установленной на входе канала ускорителя, и диффузором с радиальными диэлектрическими ребрами, при этом катушка возбуждения магнитного поля подключена к источнику переменной ЭДС.

Похожие патенты:

Изобретение относится к плазменной технике и может использоваться в электроракетных двигателях на базе ускорителя плазмы с замкнутым дрейфом электронов, а также в технологических ускорителях, применяемых в процессах вакуумно-плазменной технологии

ЭЛЕКТРИЧЕСКИЙ РАКЕТНЫЙ ДВИГАТЕЛЬ , электроракетный двигатель (ЭРД) - ракетный двигатель , в котором в качестве источника энергии для создания тяги используется электрическая энергия бортовой энергоустановки КА (обычно солнечные или аккумуляторные батареи). По принципу действия ЭРД подразделяются на электротермические ракетные двигатели , электростатические ракетные двигатели и электромагнитные ракетные двигатели . В электротермических РД электрическая энергия применяется для нагрева рабочего тела (РТ) с целью обращения его в газ с температурой 1000-5000 К; газ, истекая из реактивного сопла (аналогичного соплу химического РД), создаёт тягу. В электростатических РД, например, ионном, вначале производится ионизация РТ, после чего положительные ионы ускоряются в электростатическом поле (при помощи системы электродов) и, истекая из сопла, создают тягу (для нейтрализации заряда реактивной струи в неё инжектируются электроны). В электромагнитном РД (плазменном) рабочим телом является плазма любого вещества, ускоряемая за счёт силы Ампера в скрещённых электрических и магнитном полях. На базе указанных основных типов (классов) ЭРД возможно создание различных промежуточных и комбинированных вариантов, в наибольшей степени отвечающих конкретным условиям применения. Кроме того, некоторые ЭРД при изменении режима электропитания могут «переходить» из одного класса в другой.

ЭРД имеет исключительно высокий удельный импульс - до 100 км/с и более. Однако большой потребный расход энергии (1-100 кВт/Н тяги) и малое отношение тяги к площади поперечного сечения реактивной струи (не более 100 кН/м 2) ограничивают максимально целесообразную тягу ЭРД несколькими десятками ньютонов. Для ЭРД характерны размеры ~ 0,1 м и масса порядка нескольких килограммов.

Рабочие тела ЭРД определяются сущностью процессов, протекающих в различных типах этих двигателей, и отличаются большим разнообразием: это низкомолекулярные или легко диссоциирующие газы и жидкости (в электротермических РД); щелочные или тяжёлые, легко испаряющиеся металлы, а также органические жидкости (в электростатических РД); различные газы и твёрдые вещества (в электромагнитных РД). Обычно бак с РТ совмещается конструктивно с ЭРД в едином двигательном блоке (модуле). Разделение источника энергии и РТ способствует весьма точному регулированию тяги ЭРД в широких пределах при сохранении высокого значения удельного импульса. Многие ЭРД способны работать сотни и тысячи часов при многократном включении. Некоторые ЭРД, являющиеся по своему принципу импульсными РД, допускают десятки млн. включений. Экономичность и совершенство рабочего процесса ЭРД характеризуются значениями коэффициента полезного действия и цены тяги , размеры ЭРД - значением плотности тяги .

Характерные значения некоторых параметров ЭРД

Параметры Тип ЭРД
электро-термический электро-магнитный электро-статический
Тяга, Н 0,1 — 1 0,0001 — 1 0,001 — 0,1
Удельный импульс, км/с 1 — 20 20 — 60 30 — 100
Плотность тяги (максимальная), кН/м 2 100 1 0,03 — 0,05
Напряжение питающего тока, В единицы — десятки десятки — сотни десятки тысяч
Сила питающего тока, А сотни — тысячи сотни — тысячи доли единицы
Цена тяги, кВт/Н 1 — 10 100 10 — 40
КПД 0,6 — 0,8 0,3 — 0,5 0,4 — 0,8
Электрическая мощность, Вт десятки — тысячи единицы — тысячи десятки — сотни

Важной характеристикой ЭРД являются параметры электропитания. В связи с тем, что для большинства существующих и перспективных бортовых энергоустановок характерно генерирование постоянного тока сравнительно низкого напряжения (единицы — десятки вольт) и большой силы (до сотен и тысяч ампер), проще всего вопрос электропитания решается в электротермических РД, являющихся преимущественно низковольтными и сильноточными. Эти РД могут питаться также от источника переменного тока. Наибольшие трудности с электропитанием возникают при использовании электростатических РД, для работы которых необходим постоянный ток высокого (до 30-50 кВ) напряжения, хотя и малой силы. В этом случае необходимо предусматривать преобразующие устройства, которые значительно увеличивают массу ДУ. Наличие в ДУ рабочих элементов, связанных с электропитанием ЭРД, и малое значение тяги ЭРД определяют чрезвычайно низкую тяговооружённостъ КА с этими двигателями. Поэтому ЭРД имеет смысл применять только в КА после достижения 1-й космической скорости с помощью химического или ядерного РД (кроме того, некоторые ЭРД вообще могут работать лишь в условиях космического вакуума).

Идея использования электрической энергии для получения реактивной тяги обсуждалась ещё К. Э. Циолковским и другими пионерами космонавтики. В 1916-17 Р. Годдард подтвердил опытами реальность этой идеи. В 1929-33 В. П. Глушко создал экспериментальный электротермический РД. Затем в связи с отсутствием средств доставки ЭРД в космос и проблематичностью создания источников электропитания с приемлемыми параметрами разработки ЭРД были прекращены. Они возобновились в конце 50-х — начале 60-х гг. и были стимулированы успехами космонавтики и физики высокотемпературной плазмы (развитой в связи с проблемой управляемого термоядерного синтеза). К началу 80-х гг. в СССР и США испытано около 50 различных конструкций ЭРД в составе КА и высотных атмосферных зондов. В 1964 испытаны впервые в полёте электромагнитные (СССР) и электростатические (США) РД, в 1965 — электротермические РД (США). ЭРД использовались для управления положением и коррекций орбит КА, для перевода КА на другие орбиты (подробнее см. в ст. о различных типах ЭРД). Значительные успехи в создании ЭРД достигнуты в Великобритании, ФРГ, Франции, Японии, Италии. Проектные исследования показали целесообразность применения ЭРД в реактивных системах управления КА, рассчитанных на длительную работу (несколько лет), а также в качестве маршевых двигателей КА, совершающих сложные околоземные орбитальные переходы и межпланетные перелёты. Использование для указанных целей ЭРД вместо химических РД позволит увеличить относительную массу полезного груза КА, а в некоторых случаях сократить сроки полёта или сэкономить средства.

В связи с малым ускорением, сообщаемым КА электрическими двигателями, маршевые ДУ с ЭРД должны работать непрерывно в течение нескольких месяцев (например, при переходе КА с низкой орбиты на геосинхронную) или несколько лет (при межпланетных полётах). В США исследовалась, например, маршевая ДУ с несколькими ионными ЭРД тягой по 135 мН и удельным импульсом ~ 30 км/с, питаемыми от солнечной энергетической установки. В зависимости от числа ЭРД и запаса РТ (ртуть) ДУ могла бы обеспечить полёт КА к кометам и астероидам, вывод КА на орбиты Меркурия, Венеры, Сатурна, Юпитера, посылку КА, способного доставить на Землю марсианский грунт, посылку исследовательских зондов в атмосферы внешних планет и их спутников, вывод КА на околосолнечные орбиты вне плоскости эклиптики и т. д. В частности, ДУ в варианте с 6 ЭРД и запасом РТ в 530 кг смогла бы обеспечить пролёт около кометы Энке - Баклунда полезного груза массой 410 кг (включая 60 кг научной аппаратуры).

Исследуются также ДУ с ЭРД, питаемыми от ядерных энергетических установок. Использование этих установок, параметры которых не зависят от внешних условий, представляется целесообразным при электрической мощности КА свыше 100 кВт. Указанные ДУ могут обеспечить манёвры транспортных кораблей вблизи Земли, а также полёты между Землёй и Луной, посылку КА для детального исследования внешних планет, полёты межпланетных пилотируемых КК и т. д. Согласно предварительным проработкам, КА с начальной массой 20-30 т, снабжённый реакторной энергоустановкой мощностью в несколько сотен кВт и небольшим числом импульсных электромагнитных ЭРД с тягой по несколько десятков Н, смог бы в течение 8-9 лет исследовать детально систему Юпитера, доставив на Землю образцы грунта его спутников. Достижение высоких расчётных характеристик ДУ для такого КА требует, однако, решения многих проблем.

Разработка ЭРД способствует решению теоретических вопросов и созданию специальных материалов, технология, процессов, элементов и устройств, имеющих большое значение для развития промышленных технологических процессов, электротехники, электроники, лазерной техники, термоядерной физики, газодинамики, а также космических, химических и медицинских исследований.

Включайся в дискуссию
Читайте также
Пьер и мари кюри открыли радий
Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса