Подпишись и читай
самые интересные
статьи первым!

5 пищевых цепочек по биологии. Пищевая цепь

  • Вопрос 11. Живое вещество. Назовите и охарактеризуйте свойства живого вещества.
  • Вопрос 12. Живое вещество. Функции живого вещества.
  • Вопрос 13. С какой функцией живого вещества связывают Первую и Вторую точку Пастера.
  • Вопрос 14. Биосфера. Назовите и охарактеризуйте основные свойства биосферы.
  • Вопрос 15. В чем сущность принципа Ле Шателье – Брауна.
  • Вопрос 16. Сформулируйте закон Эшби.
  • Вопрос 17. Что является основой динамического равновесия и устойчивости экосистем. Устойчивость и саморегуляция экосистемы
  • Вопрос 18. Круговорот веществ. Типы круговоротов веществ.
  • Вопрос 19. Изобразите и поясните блоковую модель экосистемы.
  • Вопрос 20. Биом. Назовите наиболее крупные наземные биомы.
  • Вопрос 21. В чем сущность «правила краевого эффекта».
  • Вопрос 22. Виды эдификаторы, доминанты.
  • Вопрос 23. Трофическая цепь. Автотрофы, гетеротрофы, редуценты.
  • Вопрос 24. Экологическая ниша. Правило конкурентного исключения г. Ф. Гаузе.
  • Вопрос 25. Представьте в виде уравнения баланс пищи и энергии для живого организма.
  • Вопрос 26. Правило 10%, кто сформулировал и когда.
  • Вопрос 27. Продукция. Первичная и Вторичная продукция. Биомасса организма.
  • Вопрос 28. Пищевая цепь. Типы пищевых цепей.
  • Вопрос 29. Для чего используют экологические пирамиды, назовите их.
  • Вопрос 30. Сукцессии. Первичная и вторичная сукцессия.
  • Вопрос 31. Назовите последовательные стадии первичной сукцессии. Климакс.
  • Вопрос 32. Назовите и охарактеризуйте этапы воздействия человека на биосферу.
  • Вопрос 33. Ресурсы биосферы. Классификация ресурсов.
  • Вопрос 34. Атмосфера – состав, роль в биосфере.
  • Вопрос 35. Значение воды. Классификация вод.
  • Классификация подземных вод
  • Вопрос 36. Биолитосфера. Ресурсы биолитосферы.
  • Вопрос 37. Почва. Плодородие. Гумус. Образование почвы.
  • Вопрос 38. Ресурсы растительности. Лесные ресурсы. Ресурсы животного мира.
  • Вопрос 39. Биоценоз. Биотоп. Биогеоценоз.
  • Вопрос 40. Факториальная и популяционная экология, синэкология.
  • Вопрос 41. Назовите и охарактеризуйте экологические факторы.
  • Вопрос 42. Биогеохимические процессы. Как осуществляется круговорот азота.
  • Вопрос 43. Биогеохимические процессы. Как осуществляется круговорот кислорода. Круговорот кислорода в биосфере
  • Вопрос 44. Биогеохимические процессы. Как осуществляется круговорот углерода.
  • Вопрос 45. Биогеохимические процессы. Как осуществляется круговорот воды.
  • Вопрос 46. Биогеохимические процессы. Как осуществляется круговорот фосфора.
  • Вопрос 47. Биогеохимические процессы. Как осуществляется круговорот серы.
  • Вопрос 49. Энергетический баланс биосферы.
  • Вопрос 50. Атмосфера. Назовите слои атмосферы.
  • Вопрос 51. Виды загрязнителей атмосферы.
  • Вопрос 52. Как происходит естественное загрязнение атмосферы.
  • Вопрос 54. Основные ингредиенты загрязнения атмосферы.
  • Вопрос 55. Какие газы вызывают парниковый эффект. Последствия увеличения парниковых газов в атмосфере.
  • Вопрос 56. Озон. Озоновая дыра. Какие газы вызывают разрушение озонового слоя. Последствия для живых организмов.
  • Вопрос 57. Причины образования и выпадения кислотных осадков. Какие газы вызывают образование кислотных осадков. Последствия.
  • Последствия кислотных дождей
  • Вопрос 58. Смог, его образование и влияние на человека.
  • Вопрос 59. Пдк, разовая пдк, среднесуточная пдк. Пдв.
  • Вопрос 60. Для чего используют пылеуловители. Типы пылеуловителей.
  • Вопрос 63. Назовите и охарактеризуйте методы очистки воздуха от паро - и газообразных загрязнителей.
  • Вопрос 64. Чем метод абсорбции отличается от метода адсорбции.
  • Вопрос 65. От чего зависит выбор метода очистки газа.
  • Вопрос 66. Назовите, какие газы образуются при сгорании топлива автотранспорта.
  • Вопрос 67. Пути очистки выхлопных газов от автотранспорта.
  • Вопрос 69. Качество воды. Критерии качества воды. 4 класса воды.
  • Вопрос 70. Норма водопотребления и водоотведения.
  • Вопрос 71. Назовите физико-химические и биохимические методы очистки воды. Физико-химический метод очистки воды
  • Коагуляция
  • Выбор коагулянта
  • Органические коагулянты
  • Неорганические коагулянты
  • Вопрос 72. Сточная вода. Охарактеризуйте гидромеханические методы очистки сточных вод от твердых примесей (процеживание, отстаивание, фильтрование).
  • Вопрос 73. Охарактеризуйте химические методы очистки сточных вод.
  • Вопрос 74. Охарактеризуйте биохимические методы очистки сточных вод. Достоинства и недостатки этого метода.
  • Вопрос 75. Аэротенки. Классификация аэротенков.
  • Вопрос 76. Суша. Два вида вредного воздействия на почву.
  • Вопрос 77. Назовите мероприятия по охране почв от загрязнений.
  • Вопрос 78. Утилизация и переработка отходов.
  • 3.1.Огневой способ.
  • 3.2. Технологии высокотемпературного пиролиза.
  • 3.3. Плазмохимическая технология.
  • 3.4.Использование вторичных ресурсов.
  • 3.5 Захоронение отходов
  • 3.5.1.Полигоны
  • 3.5.2 Изоляторы, подземные хранилища.
  • 3.5.3.Заполнение карьеров.
  • Вопрос 79. Назовите международные природоохранные организации. Межправительственные экологические организации
  • Вопрос 80. Назовите международные экологические движения. Неправительственные международные организации
  • Вопрос 81. Назовите природоохранные организации рф.
  • Международный союз охраны природы (мсоп) в россии
  • Вопрос 82. Виды природоохранных мероприятий.
  • 1. Природоохранные мероприятия в области охраны и рационального использования водных ресурсов:
  • 2. Природоохранные мероприятия в области охраны атмосферного воздуха:
  • 3. Природоохранные мероприятия в области охраны и рационального использования земельных ресурсов:
  • 4. Природоохранные мероприятия в области управления отходами:
  • 5. Энергосберегающие мероприятия:
  • Вопрос 83. Почему Всемирный день охраны природы отмечается 5 июня.
  • Вопрос 85. Устойчивое развитие. Правовая охрана биосферы.
  • Правовая охрана биосферы
  • Вопрос 86. Финансирование природоохранных мероприятий.
  • Вопрос 87. Экологическое нормирование. Экологический мониторинг. Экологическая экспертиза.
  • Вопрос 88. Экологические правонарушения. Ответственность за экологические правонарушения.
  • Вопрос 89. Рациональное природопользование.
  • Рациональное природопользование
  • Вопрос 90. Глобальные экологические проблемы и меры по предотвращению экологической угрозы.
  • Вопрос 91. Какие горючие газы являются компонентами газообразного топлива.
  • Вопрос 92. Охарактеризуйте следующие газы и их влияние на человека: метан, пропан, бутан.
  • Физические свойства
  • Химические свойства
  • Применение пропана
  • Вопрос 93. Охарактеризуйте следующие газы и их влияние на человека: этилен, пропилен, сероводород.
  • Вопрос 94. В результате чего образуется диоксид углерода и оксид углерода, их влияние на живые организмы.
  • Вопрос 95. В результате чего образуется оксид азота, оксид серы и пары воды, их влияние на живые организмы.
  • Вопрос 28. Пищевая цепь. Типы пищевых цепей.

    ПИЩЕВАЯ ЦЕПЬ (трофическая цепь, цепь питания), взаимосвязь организмов через отношения пища – потребитель (одни служат пищей для других). При этом происходит трансформация вещества и энергии от продуцентов (первичных производителей) черезконсументов (потребителей) к редуцентам (преобразователям мёртвой органики в неорганические вещества, усваиваемые продуцентами). Различают 2 типа пищевых цепей – пастбищную и детритную. Пастбищная цепь начинается с зелёных растений, идёт к пасущимся растительноядным животным (консументы 1-го порядка) и затем к хищникам, добывающим этих животных (в зависимости от места в цепи – консументы 2-го и последующих порядков). Детритная цепь начинается с детрита (продукт распада органики), идёт к микроорганизмам, которые им питаются, а затем к детритофагам (животные и микроорганизмы, вовлечённые в процесс разложения отмирающей органики).

    Примером пастбищной цепи может служить многоканальная её модель в африканской саванне. Первичными продуцентами являются травостой и деревья, консументами 1-го порядка – растительноядные насекомые и травоядные животные (копытные, слоны, носороги и др.), 2-го порядка – хищные насекомые, 3-го – плотоядные пресмыкающиеся (змеи и др.), 4-го – хищные млекопитающие и хищные птицы. В свою очередь детритофаги (жуки-скарабеи, гиены, шакалы, грифы и т. д.) на каждом из этапов пастбищной цепи разрушают туши погибших животных и остатки пищи хищников. Количество особей, включённых в пищевую цепь, в каждом её звене последовательно уменьшается (правило экологической пирамиды), т. е. число жертв всякий раз существенно превышает число их потребителей. Пищевые цепи не изолированы одна от другой, а переплетаются друг с другом, образуя пищевые сети.

    Вопрос 29. Для чего используют экологические пирамиды, назовите их.

    Экологическая пирамида - графические изображения соотношения между продуцентами и консументами всех уровней (травоядных, хищников; видов, питающихся другими хищниками) в экосистеме.

    Схематически изображать эти соотношения предложил американский зоолог Чарльз Элтон в 1927 году.

    При схематическом изображении каждый уровень показывают в виде прямоугольника, длина или площадь которого соответствует численным значениям звена пищевой цепи (пирамида Элтона), их массе или энергии. Расположенные в определенной последовательности прямоугольники создают различные по форме пирамиды.

    Основанием пирамиды служит первый трофический уровень - уровень продуцентов, последующие этажи пирамиды образованы следующими уровнями пищевой цепи - консументами различных порядков. Высота всех блоков в пирамиде одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне.

    Экологические пирамиды различают в зависимости от показателей, на основании которых строится пирамида. При этом для всех пирамид установлено основное правило, согласно которому в любой экосистеме больше растений, чем животных, травоядных, чем плотоядных, насекомых, чем птиц.

    На основе правила экологической пирамиды можно определить или рассчитать количественные соотношения разных видов растений и животных в естественных и искусственно создаваемых экологических системах. Например, 1 кг массы морского зверя (тюленя, дельфина) нужно 10 кг съеденной рыбы, а этим 10 кг нужно уже 100 кг их корма - водных беспозвоночных, которым в свою очередь для образования такой массы необходимо съедать 1000 кг водорослей и бактерий. В данном случае экологическая пирамида будет устойчива.

    Однако, как известно, из каждого правила бывают исключения, которые будут рассмотрены в каждом типе экологических пирамид.

    Первые экологические схемы в виде пирамид построил в двадцатых годах XX в. Чарлз Элтон. Они были основаны на полевых наблюдениях за рядом животных различных размерных классов. Элтон не включил в них первичных продуцентов и не делал никаких различий между детритофа-гами и редуцентами. Однако он отметил, что хищники обычно крупнее своих жертв, и понял, что такое соотношение крайне специфично лишь для определенных размерных классов животных. В сороковые годы американский эколог Реймонд Линдеман применил идею Элтона к трофическим уровням, абстрагировавшись от конкретных составляющих их организмов. Однако, если распределить животных по размерным классам легко, то определить, к какому трофическому уровню они относятся, гораздо сложнее. В любом случае сделать это можно лишь весьма упрощенно и обобщенно. Пищевые отношения и эффективность передачи энергии в биотическом компоненте экосистемы традиционно изображают в виде ступенчатых пирамид. Это дает наглядную основу для сопоставления: 1) разных экосистем; 2) сезонных состояний одной и той же экосистемы; 3) разных фаз изменения экосистемы. Существуют три типа пирамид: 1) пирамиды чисел, основанные на подсчете организмов каждого трофического уровня; 2) пирамиды биомассы, в которых используется суммарная масса (обычно сухая) организмов на каждом трофическом уровне; 3) пирамиды энергии, учитывающие энергоемкость организмов каждого трофического уровня.

    Типы экологических пирамид

    пирамиды чисел - на каждом уровне откладывается численность отдельных организмов

    Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается (рис.3).

    Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. В данном случае пирамида будет иметь вид треугольника с широким основанием суживающимся кверху.

    Однако подобная форма пирамиды чисел характерна не для всех экосистем. Иногда они могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых), поэтому пирамиды чисел наименее информативны и наименее показательны, т.е. численность организмов одного трофического уровня в значительной степени зависит от их размеров.

    пирамиды биомасс - характеризует общую сухую или сырую массу организмов на данном трофическом уровне, например, в единицах массы на единицу площади - г/м 2 , кг/га, т/км 2 или на объем - г/м 3 (рис.4)

    Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д.

    В данном случае (если организмы не слишком различаются по размерам) пирамида также будет иметь вид треугольника с широким основанием суживающимся кверху. Однако и из этого правила имеются существенные исключения. Например, в морях биомасса растительноядного зоопланктона существенно (иногда в 2-3 раза) больше биомассы фитопланктона, представленного преимущественно одноклеточными водорослями. Это объясняется тем, что водоросли очень быстро выедаются зоопланктоном, но от полного выедания их предохраняет очень высокая скорость деления их клеток.

    В целом для наземных биогеоценозов, где продуценты крупные и живут сравнительно долго, характерны относительно устойчивые пирамиды с широким основанием. В водных же экосистемах, где продуценты невелики по размеру и имеют короткие жизненные циклы, пирамида биомасс может быть обращенной, или перевернутой (острием направлена вниз). Так, в озерах и морях масса растений превышает массу потребителей только в период цветения (весной), а в остальное время года может создаться обратное положение.

    Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем.

    Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

    пирамиды энергии - показывает величину потока энергии или продуктивности на последовательных уровнях (рис.5).

    В противоположность пирамидам чисел и биомассы, отражающим статику системы (количество организмов в данный момент), пирамида энергии отражая картину скоростей прохождения массы пищи (количества энергии) через каждый трофический уровень пищевой цепи, дает наиболее полное представление о функциональной организации сообществ.

    На форму этой пирамиды не влияют изменения размеров и интенсивности метаболизма особей, и если учтены все источники энергии, то пирамида всегда будет иметь типичный вид с широким основанием и суживающейся верхушкой. При построении пирамиды энергии в ее основание часто добавляют прямоугольник, показывающий приток солнечной энергии.

    В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90% всей энергии, которая расходуется на поддержание их жизнедеятельности.

    Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.

    В экосистемах продуценты, консументы и редуценты объединены сложными процессами переноса веществ и энергии, которая заключена в пище, созданной преимущественно растениями.

    Перенос потенциальной энергии пищи, созданной растениями, через ряд организмов путем поедания одних видов другими называется трофической (пищевой) цепью, а каждое ее звено называется трофическим уровнем.

    Все организмы, пользующиеся одним типом пищи, принадлежат к одному трофическому уровню.

    На рис.4. представлена схема трофической цепи.

    Рис.4. Схема пищевой цепи.

    Рис.4. Схема пищевой цепи.

    Первый трофический уровень образуют продуценты (зеленые растения), которые аккумулируют солнечную энергию и создают органические вещества в процессе фотосинтеза.

    При этом более половины энергии, запасенной в органических веществах, расходуется в процессах жизнедеятельности растений, превращаясь при этом в тепло и рассеиваясь в пространстве, а остальная часть поступает в пищевые цепи и может быть использована гетеротрофными организмами последующих трофических уровней при питании.

    Второй трофический уровень образуют консументы 1-го порядка - это растительноядные организмы (фитофаги), которые питаются продуцентами.

    Консументы первого порядка большую часть энергии, которая содержится в пище, расходуют на обеспечение своих жизненных процессов, а остальную часть энергии используют на построение собственного тела, преобразуя тем самым растительные ткани в животные.

    Таким образом, консументы 1-го порядка осуществляют первый, принципиальный этап трансформации органического вещества, синтезированного продуцентами.

    Первичные консументы могут служить источником питания для консументов 2-го порядка.

    Третий трофический уровень образуют консументы 2-го порядка - это плотоядные организмы (зоофаги), которые питаются исключительно растительноядными организмами (фитофагами).

    Консументы 2-го порядка осуществляют второй этап трансформации органического вещества в цепях питания.

    Однако, химические вещества, из которых строятся ткани животных организмов, довольно однородны и поэтому трансформация органического вещества при переходе со второго трофического уровня консументов на третий не имеет столь принципиального характера, как при переходе с первого трофического уровня на второй, где происходит преобразование растительных тканей в животные.

    Вторичные консументы могут служить источником питания для консументов 3-го порядка.

    Четвертый трофический уровень образуют консументы 3-го порядка - это плотоядные животные, питающиеся только плотоядными организмами.

    Последний уровень трофической цепи занимают редуценты (деструкторы и детритофаги).

    Редуценты-деструкторы (бактерии, грибы, простейшие) в процессе своей жизнедеятельности разлагают органические остатки всех трофических уровней продуцентов и консументов до минеральных веществ, которые вновь возвращаются к продуцентам.

    Все звенья трофической цепи взаимосвязаны и взаимозависимы.

    Между ними от первого к последнему звену осуществляется передача веществ и энергии. Однако, необходимо отметить, что при передаче энергии с одного трофического уровня на другой происходит ее потеря. В результате цепь питания не может быть длинной и чаще всего состоит из 4-6 звеньев.

    Однако, такие пищевые цепи в чистом виде в природе обычно не встречаются, поскольку каждый организм имеет несколько источников питания, т.е. пользуется несколькими типами пищи, и сам используется как продукт питания другими многочисленными организмами из одной и той же трофической цепи или даже из разных цепей питания.

    Например:

      всеядные организмы потребляют в пищу как продуцентов, так и консументов, т.е. являются одновременно консументами первого, второго, а иногда и третьего порядка;

      комар, питающийся кровью человека и хищных животных, находится на очень высоком трофическом уровне. Но комарами питается болотное растение росянка, которая, таким образом, является и продуцентом и консументом высокого порядка.

    Поэтому, практически любой организм, входящий в состав одной трофической цепи, одновременно может входить и в состав других трофических цепей.

    Таким образом, трофические цепи могут многократно разветвляться и переплетаться, образуя сложные сети питания или трофические (пищевые) сети , в которых многочисленность и разнообразие пищевых связей выступает как важный механизм поддержания целостности и функциональной устойчивости экосистем.

    На рис.5. показана упрощенная схема сети питания для наземной экосистемы.

    Вмешательство человека в природные сообщества организмов путем намеренного или ненамеренного устранения какого-либо вида часто имеет непредсказуемые негативные последствия и приводит к нарушению устойчивости экосистем.

    Рис.5. Схема трофической сети.

    Существует два основных типа трофических цепей:

      пастбищные цепи (цепи выедания или или цепи потребления);

      детритные цепи (цепи разложения).

    Пастбищные цепи (цепи выедания или цепи потребления) - это процессы синтеза и трансформации органических веществ в трофических цепях.

    Пастбищные цепи начинаются с продуцентов. Живые растения поедаются фитофагами (консументами первого порядка), а сами фитофаги являются пищей для плотоядных животных (консументов второго порядка), которыми могут питаться консументы третьего порядка и т.д.

    Примеры пастбищных цепей для наземных экосистем:

    3 звена: осина → заяц → лиса; растение → овца → человек.

    4 звена: растения → кузнечики → ящерицы → ястреб ;

    нектар цветка растения → муха → насекомоядная птица →

    хищная птица .

    5 звеньев: растения → кузнечики → лягушки → змеи → орел.

    Примеры пастбищных цепей для водных экосистем:→

    3 звена: фитопланктон → зоопланктон → рыбы;

    5 звеньев: фитопланктон → зоопланктон → рыбы → хищные рыбы →

    хищные птицы.

    Детритные цепи (цепи разложения) - это процессы поэтапной деструкции и минерализации органических веществ в трофических цепях.

    Детритные цепи начинаются с поэтапного разрушения мертвого органического вещества детритофагами, которые последовательно сменяют друг друга в соответствии со специфичным типом питания.

    На последних стадиях деструкционных процессов функционируют редуценты-деструкторы, минерализующие остатки органических соединений до простых неорганических веществ, которые вновь используются продуцентами.

    Например, при разложении мертвой древесины последовательно сменяют друг друга: жуки → дятлы → муравьи и термиты → грибы-деструкторы.

    Детритные цепи наиболее распространены в лесах, где большая часть (около 90%) ежегодного прироста биомассы растений не потребляется непосредственно растительноядными животными, а отмирает и попадает в эти цепи в виде листового опада, подвергаясь затем разложению и минерализации.

    В водных экосистемах большая часть вещества и энергии включается в пастбищные цепи, а в наземных экосистемах наибольшее значение имеют детритные цепи.

    Таким образом, на уровне консументов происходит разделение потока органического вещества по разным группам потребителей:

      живое органическое вещество следует по пастбищным цепям;

      мертвое органическое вещество идет по детритным цепям.

    Пищевая цепь - это сложная структура звеньев, в которой каждое из них взаимосвязано с соседним или же каким-либо другим звеном. Этими составляющими цепочки являются различные группы организмов флоры и фауны.

    В природе пищевая цепь - это способ движения вещества и энергии в среде. Все это необходимо для развития и "строительства" экосистем. Трофическими уровнями называется сообщество организмов, которое располагается на определенном уровне.

    Биотический круговорот

    Пищевая цепь является биотическим круговоротом, который объединяет живые организмы и компоненты неживой природы. Данное явление также называется биогеоценозом и включает в себя три группы: 1. Продуценты. Группа состоит из организмов, которые производят пищевые вещества для других существ в результате фотосинтеза и хемосинтеза. Продуктом данных процессов являются первичные органические вещества. Традиционно, продуценты являются первыми в пищевой цепи. 2. Консументы. Пищевая цепь располагает данную группу над продуцентами, поскольку они потребляют те питательные вещества, которые произвели продуценты. В данную группу входят различные гетеротрофные организмы, к примеру, животные, съедающие растения. Различают несколько подвидов консументов: первичные и вторичные. В разряду первичных потребителей можно отнести травоядных животных, а ко вторичным - плотоядных, которые поедают описанных ранее травоядных. 3. Редуценты. Сюда относятся организмы, которые разрушают все предыдущие уровни. Наглядным примером может стать случай, когда беспозвоночные и бактерии разлагают остатки растений или мертвые организмы. Таким образом, пищевая цепь завершается, но круговорот веществ в природе продолжается, поскольку в результате данных превращений образуются минеральные и другие полезные вещества. В дальнейшем образованные компоненты используются продуцентами для образования первичной органики. Пищевая цепьсложная структура, поэтому вторичные консументы запросто могут стать пищей для других хищников, которых причисляют к третичным консументам.

    Классификация

    таким образом, принимает непосредственное участие в круговороте веществ в природе. Различают два типа цепей: детритные и пастбищные. Как видно из названий, первая группа наиболее часто встречается в лесных массивах, а вторая - на открытых пространствах: поле, луг, пастбище.

    Такая цепь имеет более сложную структуру связей, там даже возможно появление хищников четвертого порядка.

    Пирамиды

    одна или несколько, существующие в конкретной среде обитания, образуют пути и направления движения веществ и энергии. Все это, то есть организмы и их места обитания, образуют функциональную систему, которая носит название экосистемы (экологической системы). Трофические связи достаточно редко бывают прямолинейными, обычно они имеют вид сложной и запутанной сети, в которых каждый компонент взаимосвязан с остальными. Переплетение пищевых цепей образует пищевые сети, которые в основном служат для построения и рассчетов экологических пирамид. В основе каждой пирамиды находится уровень продуцентов, наверх которого настраиваются все последующие уровни. Различают пирамиду чисел, энергии и биомассы.

    ТРОФИЧЕСКИЕ ЦЕПИ

    Цель работы : получение навыков составления и анализа пищевых (трофических) цепей.

    Общие сведения

    Между живыми организмами экосистем существуют разнообразные связи. Одной из центральных связей, которая как бы цементирует самые разные организмы в одну экосистему, является пищевая, или трофическая. Пищевые связи объединяют между собой организмы по принципу пища - потребитель. Это ведет к возникновению пищевых, или трофических цепей. Внутри экосистемы содержащие энергию вещества создаются автотрофными организмами и служат пищей для гетеротрофов. Пищевые связи - это механизмы передачи энергии от одного организма к другому. Типичный пример – животное поедает растения. Это животное, в свою очередь, может быть съедено другим животным. Таким путем может происходить перенос энергии через ряд организмов

    Каждый последующий питается предыдущим, поставляющим ему сырье и энергию.

    Такая последовательность переноса энергии пищи в процессе питания от ее источника через последовательный ряд живых организмов называется пищевой (трофической) цепью, или цепью питания.Трофические цепи - это путь однонаправленного потока солнечной энергии, поглощенной в процессе фотосинтеза, через живые организмы экосистемы в окружающую среду, где неиспользованная часть ее рассеивается в виде низкотемпературной тепловой энергии.

    ные мыши, воробьи, голуби. Иногда в экологической литературе любую пищевую связь называют связью «хищник – жертва», понимая под хищником поедателя. Стабильность системы «хищник-жертва» обеспечивается следующими факторами:

    - неэффективность хищника, бегство жертвы;

    - экологические ограничения, налагаемые внешней средой на численность популяции;

    - наличие у хищников альтернативных пищевых ресурсов;

    - уменьшение запаздывания в реакции хищника.

    Место каждого звена в цепи питания являетсятрофическим уровнем. Первый трофический уровень занимают автотрофы, или так называемыепервичные продуценты. Организмы второго трофического уровня называютсяпер-

    вичными консументами, третьего - вторичными консументамии т. д.

    Трофические цепи делятся на два основных типа: пастбищные (цепи выедания, цепи потребления) идетритные (цепи разложения).

    Растение → заяц → волк Продуцент → травоядное животное → плотоядное животное

    Широко распространены и такие пищевые цепи:

    Растительный материал (например, нектар) → муха → паук → землеройка → сова.

    Сок розового куста → тля → божья коровка → паук → насекомоядная птица → хищная птица.

    В водных, в частности, морских экосистемах пищевые цепи хищников длиннее, чем в наземных.

    Детритная цепь начинается с мертвого органического вещества - детрита, который разрушается детритофагами, поедаемыми мелкими хищниками, и заканчивается работой редуцентов, минерализующих органические остатки. В детритных пищевых цепях наземных экосистем важную роль играют лиственные леса, большая часть листвы которых не употребляется растительноядными животными в пищу и входит в состав лесной подстилки. Листья измельчаются многочисленными детритофагами (грибами, бактериями, насекомыми), далее заглатываются дождевыми червями, которые осуществляют равномерное распределение гумуса в поверхностном слое почвы, образуя мулль. Разлагающие

    микроорганизмы, завершающие цепь, производят окончательную минерализацию мертвых органических остатков (рис. 1).

    В целом типичные детритные цепи наших лесов можно представить следующим образом:

    листовая подстилка → дождевой червь → черный дрозд → ястребперепелятник;

    мертвое животное → личинки падальных мух → травяная лягушка → уж.

    Рис. 1. Детритная пищевая цепь (по Небелу, 1993)

    В качестве исходного органического материала, который подвергается в почве биологической переработке организмами, населяющими почву, можно для примера рассмотреть древесину. Древесина, попадающая на поверхность почвы, прежде всего, подвергается переработке личинками насекомых усачей, златок, сверлил, которые используют ее в пищу. Им на смену приходят грибы, мицелий которых в первую очередь поселяется в ходах, проделанных в древесине насекомыми. Грибы еще сильнее разрыхляют и разрушают древесину. Такая рыхлая древесина и сам мицелий оказываются пищей для личинок огнецветки. На следующем этапе в уже сильно разрушенной древесине поселяются муравьи, которые уничтожают почти всех личинок и создают условия для поселения в древесине новой генерации грибов. Такими грибами начинают кормиться улитки. Завершают же разрушение и гумификацию древесины микробы-редуценты.

    Аналогично идет гумификация и минерализация навоза диких и домашних животных, поступающего в почву.

    Как правило, пища каждого живого существа более или менее разнообразна. Только все зеленые растения «питаются» одинаково: углекислым газом и ионами минеральных солей. У животных случаи узкой специализации питания довольно редки. В результате возможной смены питания животных все организмы экосистем вовлечены в сложную сеть пищевых взаимоотношений. Пищевые цепи тесно переплетаются друг с другом, образуя пищевые, или трофические сети. В трофической сети каждый вид прямо или косвенно связан со многими. Пример трофической сети с размещением организмов по трофическим уровням представлен на рис. 2.

    Пищевые сети в экосистемах весьма сложные, и можно сделать вывод, что поступающая в них энергия долго мигрирует от одного организма к другому.

    Рис. 2. Трофическая сеть

    В биоценозах пищевые связи играют двоякую роль. Во-первых, они

    обеспечивают передачу вещества и энергии от одного организма к другому.

    Вместе, таким образом, уживаются виды, которые поддерживают жизнь друг друга. Во-вторых, пищевые связислужат механизмом регуляции численно-

    Представление трофических сетей может быть традиционным (рис.2) или с использованием ориентированных графов (орграфов).

    Геометрически ориентированный граф можно представить в виде набора вершин, обозначаемых кружками с номерами вершин, и дуг, соединяющих эти вершины. Дуга задаёт направление от одной вершины к другой.Путём в графе называется такая конечная последовательность дуг, в которой начало каждой последующей дуги совпадает с концом предыдущей. Дуги можно обозначать парой вершин, которые она соединяет. Путь записывается в виде последовательности вершин, через которые он проходит.Контуром называется путь, начальная вершина которого совпадает с конечной.

    НАПРИМЕР:

    Вершины;

    А – дуги;

    В – контур, проходящий через вершины 2, 4,

    В 3;

    1, 2 или 1, 3, 2 – пути от вершины

    к вершине

    В сети питания вершиной графа отображаются объекты моделирования; дуги, обозначаемые стрелками, проводят от жертвы кхищнику.

    Любой живой организм занимает определённую экологическую нишу . Экологическая ниша – это совокупность территориальных и функциональных характеристик среды обитания, соответствующих требованиям данного вида. Никакие два вида не имеют в экологическом фазовом пространстве одинаковых ниш. Согласно принципу конкурентного исключения Гаузе, два вида с близкими экологическими требованиями длительное время не могут занимать одну экологическую нишу. Эти виды конкурируют, и один из них вытесняет другой. На основе сетей питания можно построитьграф конкуренции. Живые организмы в графе конкуренции отображаются в виде вершин графа, между вершинами проводится ребро (связь без направления) в том случае, если существуетживой организм , который служит пищей для организмов, отображаемых вышеуказанными вершинами.

    Разработка графа конкуренции позволяет выделить конкурирующие виды организмов и проанализировать функционирование экосистемы и её уязвимость.

    Широко распространён принцип соответствия роста сложности экосистемы и увеличения её устойчивости. Если экосистема представлена сетью питания, можно использовать разные способы измерения сложности:

    - определить число дуг;

    - найти отношение числа дуг к числу вершин;

    Для измерения сложности и разнообразия сети питания используется также трофический уровень, т.е. место организма в цепи питания. Трофический уровень можно определять как по наиболее короткой, как и по наиболее длинной цепи питания от рассматриваемой вершины, имеющей трофический уровень, равный «1».

    ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

    Задание 1

    Составьте сеть для 5 участников: трава, птицы, насекомые, зайцы, лисы.

    Задание 2

    Установите цепи питания и трофический уровень по наиболее короткому и наиболее длинному пути сети питания из задания «1».

    Трофический уровень и пищевая цепь

    сети питания

    по кратчайшему пути

    по наиболее длинному пути

    4 . Насекомые

    Примечание: пастбищная пищевая цепь начинается с продуцентов . Организм, указанный в колонке 1, является верхним трофическим уровнем. Для консументов I порядка длинный и короткий пути трофической цепи совпадают.

    Задание 3

    Предложите трофическую сеть согласно варианта задания (табл. 1П) и составьте таблицу трофических уровней по наиболее длинному и наиболее короткому пути. Пищевые предпочтения консументов приведены в табл. 2П.

    Задание 4

    Составьте трофическую сеть по рис. 3 и разместите ее участников по трофическим уровням

    ПЛАН ОТЧЕТА

    1. Цель работы.

    2. Граф трофической сети и граф конкуренции по учебному примеру (задания 1, 2).

    3. Таблица трофических уровней по учебному примеру (задание 3).

    4. Граф сети питания, граф конкуренции, таблица трофических уровней согласно варианту задания.

    5. Схема трофической сети с размещением организмов по трофическим уровням (по рис.3).

    Рис. 3. Биоценоз тундры.

    Первый ряд: мелкие воробьиные, различные двукрылые насекомые, мохноногий канюк. Второй ряд: песец, лемминги, полярная сова. Третий ряд: белая куропатка, зайцы-беляки. Четвертый ряд: гусь, волк, северный олень.

    Литература

    1. Реймерс Н.Ф. Природопользование: Словарь-справочник. – М.: Мысль, 1990. 637 с.

    2. Жизнь животных в 7-ми томах. М.: Просвещение, 1983-1989.

    3. Злобин Ю.А. Общая экология. Киев.: Наукова думка, 1998. – 430 с.

    4. Степановских А.С. Экология: Учебник для вузов. – М.: ЮНИТИДАНА,

    5. Небел Б. Наука об окружающей среде: как устроен мир. – М.: Мир, 1993.

    –т.1 – 424 с.

    6. Экология: Учебник для технических вузов/ Л.И. Цветкова, М.И. Алексеев, и др.; Под ред. Л.И. Цветковой. –М.: АСВ; СПб: Химиздат, 2001.-552с.

    7. Гирусов Э.В. и др. Экология и экономика природопользования: Учебник для вузов/Под ред. Проф. Э.В. Гирусова. – М.: Закон и право, ЮНИТИ,

    Таблица 1П

    Видовая структура биоценоза

    Название био-

    Видовой состав биоценоза

    Кедровник

    Кедр корейский, береза желтая, лещина разнолистная,

    осока, заяц-беляк, белка летяга, белка обыкновенная,

    волк, бурый медведь, гималайский медведь, соболь,

    мышь, кедровка, дятел, папоротник.

    Заболоченный

    Осоки, ирис, тростник обыкновенный.Заходят волк, лиса,

    бурый медведь, косуля, мышь. Амфибии – углозуб сибир-

    вейниковый

    ский, квакша дальневосточная, лягушка сибирская. Улит-

    ка, земляной червь. Птицы – дальневосточный белый

    аист, пегий лунь, фазан, японский журавль, даурский жу-

    равль. Бабочки махаоны.

    Белоберезовый

    Осина, береза плосколистная (белая) осина, ольха, дио-

    скорея ниппонская (травянистая лиана), злаки, осоки,

    разнотравье (клевер, чина). Кустарники – леспедеца, ря-

    бинник, таволга. Грибы – подберезовики, подосиновики.

    Животные - енотовидная собака, волк, лиса, медведь бу-

    рый, колонок, изюбрь, косуля, углозуб сибирский, лягуш-

    ка сибирская, мышь. Птицы – подорлик большой, синица,

    Ельник травя-

    Растения – пихта, лиственница, кедр корейский, клен, ря-

    бинник рябинолистный, жимолость, ель, осоки, злаки.

    кустарниковый

    Животные – заяц-беляк, белка обыкновенная, белка летя-

    га, волк, медведь бурый, медведь гималайский, соболь,

    харза, рысь, изюбрь, лось, рябчик, сова, мышь, бабочка

    Растения - дуб монгольский, осина, береза плосколистная,

    липа, ильм, маакия (единственное на Дальнем Востоке

    дерево, относящееся к семейству бобовых), кустарники –

    леспедеца, калина, рябинник рябинолистный, шиповник,

    травы – ландыш, осоки, чемерица, черемша, бубенчики,

    колокольчики. Животные – бурундук, енотовидная соба-

    ка, волк, лиса, медведь бурый, барсук, колонок, рысь, ка-

    бан, изюбрь, косуля, заяц, углозуб сибирский, квакша

    дальневосточная, лягушка сибирская, мышь, ящерица жи-

    вородящая, сойка, дятел, поползень, жук-дровосек, кузне-

    Растения - осина, береза плосколистная, боярышник, ши-

    повник, спирея, пион, злаки. Животные – енотовидная

    собака, волк, лиса, медведь бурый, колонок, изюбрь, ко-

    суля, углозуб сибирский, лягушка сибирская, мышь, яще-

    рица живородящая, сойка, дятел, поползень, подорлик,

    жук-дровосек, кузнечик,

    Таблица 2П

    Спектр питания некоторых видов

    Живые организмы

    Пищевые пристрастия - «меню»

    Трава (злаки, осоки); кора осины, липы, лещины; ягоды (земляни-

    Семена злаков, насекомые, черви.

    Белка летяга

    и их личинки.

    Растения

    Потребляют солнечную энергию и минеральные вещества, воду,

    кислород, углекислый газ.

    Грызуны, зайцы, лягушки, ящерицы, мелкие птицы.

    Белка обыкновен-

    Кедровые орехи, орехи лещины, желуди, семена злаков.

    Семена кустарников (элеутерококк), ягоды (брусника), насекомые

    и их личинки.

    Личинки насеко-

    Личинки комаров – водоросли, бактерии.

    мых комаров,

    Личинки стрекоз – насекомые, мальки рыб.

    Сок трав.

    Грызуны, зайцы, лягушки, ящерицы.

    Орлан белоплечий

    Рыба, мелкие птицы.

    Медведь бурый

    Эврифаг, предпочтение отдает животной пище: кабаны (подсвин-

    ки), рыба (лосось). Ягоды (малина, черемуха, жимолость, голуби-

    ка), коренья.

    Медведь гималай-

    Дудник (медвежья дудка), лесные ягоды (брусника, малина, чере-

    муха, голубика), мед (осы, пчелы), лилейные (луковицы), грибы,

    орехи, желуди, личинки муравьев.

    Насекомые

    Травянистые растения, листья деревьев.

    Мышь, белка, зайчата, рябчик.

    Хищник. Зайцы, белка, подсвинки.

    трава (хвощ зимующий), бобовые (вика, чина),

    кора лещины, ив, подрост берез, корни кустарников (ле-

    щина, малина).

    Почки берез, ольхи, липы; злаки; ягоды рябины, калины; хвоя пих-

    ты, ели, лиственницы.

    Мышь, бурундук, зайчата, лисята, змеи (уж, полоз), ящерица, бел-

    ка, летучая мышь.

    Мыши, зайцы, косуля, стаей могут убить оленя, лося, кабана.

    Уховертка

    Хищник. Блохи, жуки (мелкие), слизни, дождевые черви.

    Жук -дровосек

    Кора березы, кедра, липы, кленов, лиственницы.

    Пыльца растений.

    павлиноглазка

    Мышь, зайчата, бурундук, углозуб сибирский, птенцы журавлей,

    аиста, уток; квакша дальневосточная, фазанята, черви,

    крупные насекомые.

    Кора лещины, березы, ив, дуба, осока, вейник, тростник; листья бе-

    резы, ивы, дуба, лещины.

    Хищник. Рачки, личинки комара.

    Квакша дальнево-

    Водные беспозвоночные.

    Травы (вейник), осока, грибы, растительные остатки и почва.

    Растения, рыба и ее икра во время нереста, насекомые и их личин-

    Земляной червяк

    Отмершие растительные остатки.

    Дальневосточный

    Улитка, квакша, сибирская лягушка, рыба (вьюн, ротан), змеи,

    белый аист

    мыши, саранча, птенцы воробьиных птиц.

    Журавль японский

    Корневища осок, рыба, лягушки, мелкие грызуны, птенцы.

    Лунь пегий

    Мышь, мелкие птицы (овсянки, камышевки, воробья), лягушки,

    ящерицы, крупные насекомые.

    Почки березы, ольхи, вейник.

    Бабочки махаоны

    Пыльца растений (фиалки, хохлатки).

    Плотояден предпочтение отдает животной пище – зайцы, молодые

    лосята, косули, олени, кабаны.

    Енотовидная со-

    Рыба тухлая, птицы (жаворонки, овсяницы, камышевки).

    Веточный корм (береза, осина, ива, лещина; листья дуба, липы),

    желуди, кора дуба, водоросли на мелководьях, вахта трехлистная.

    Комар, пауки, муравьи, кузнечики.

    Ящерица живоро-

    Насекомые и их личинки, черви дождевые.

    Подорлик

    Хищник. Мелкие млекопитающие, фазан, мыши, зайцы, лисята,

    птицы, рыба, грызуны.

    Белки, бурундуки, птицы.

    Бурундук

    Семена яблони, шиповника, калины, рябинника, рябины; грибы;

    орехи; желуди.

    Корни, черви дождевые, мыши, насекомые (муравьи и их личинки).

    Хищник. Мыши.

    Семена злаков, орехи.

    Орехи кедровые, желуди, ягода (рябина), яблоня.

    Жуки дровосеки, насекомые древоточцы.

    Кабан, заяц, косуля, лосята, оленята, лось, олень (подранки).

    Поползень

    Насекомые; семена древесных, ягоды, орехи.

    Лемминги

    Зерноядные. Осоки, шикша, злаки.

    Зерноядные.

    Хищник. Лемминги, птенцы куропаток, чаек.

    Полярная сова

    Лемминги, мыши полевки, зайцы, утки, фазаны, тетерева.

    Белая куропатка

    Растительноядные. Семена злаков; почки берез, ив, ольхи.

    Травоядные, листья и кора деревьев, мох – ягель.

    Заяц-беляк

    Зимой – кора; летом – ягоды, грибы.

    Травоядные. Осоки, злаки, водоросли, побеги водных растений.

    Северный олень

    Ягель, злаки, ягоды (морошка, клюква), мыши.

    Косуля, изюбр, пятнистый олень, кабан.

    Дафнии, циклопы

    Одноклеточные водоросли.

    Перенос энергии в экосистеме осуществляется через так называемые пищевые цепи . В свою очередь, пищевая цепь - это перенос энергии от ее первоначального источника (обычно им являются автотрофы) через ряд организмов, путем поедания одних другими. Пищевые цепи подразделяются на два вида:

    Сосна обыкновенная => Тли => Божьи коровки => Пауки =>Насекомоядные

    птицы => Хищные птицы.

    Трава => Травоядные млекопитающие => Блохи => Жгутиконосцы.

    2) Детритная пищевая цепь. Она берет свое начало от мертвого органического вещества (т.н. детрита ), которое либо потреблятеся в пищу мелкими, преймущественно беспозвоночными животными, либо разлагается бактериями или грибами. Организмы, потребляющие мертвое органическое вещество, называются детритофагами , разлагающие его - деструкторами .

    Пастбищная и детритная пищевые цепи обычно существуют в экосистемах совместно, но один из видов пищевых цепей почти всегда доминирует над другим. В некоторых же специфических средах (например в подземной), где из-за отсутствия света невозможна жизнедеятельность зеленых растений, существуют только детритные пищевые цепи.

    В экосистемах пещевые цепи не изолированы друг от друга, а тесно переплетены. Они составляют так называемые пищевые сети . Это происходит потому, что каждый продуцент имеет не одного, а нескольких консументов, которые, в свою очередь, могут иметь несколько источников питания. Взаимосвязи внутри пищевой сети наглядно иллюстрирует приведенная ниже схема.

    Схема пищевой сети.

    В пищевых цепях образуются так называемые трофические уровни . Трофические уровни классифицируют организмы в пищевой цепи по типам их жизнедеятельности или по источникам получения энергии. Растения занимают первый трофический уровень (уровень продуцентов), травоядные (консументы первого порядка) относятся ко второму трофическому уровню, хищники, поедающие травоядных, образуют третий трофический уровень, вторичные хищники - четвертый и т.д. первого порядка.

    Поток энергии в экосистеме

    Как нам известно, перенос энергии в экосистеме осуществляется через пищевые цепи. Но далеко не вся энергия предыдущего трофического уровня переходит на следующий. В качестве примера можно привести следующую ситуацию: чистая первичная продукция в экосистеме (то есть количество энергии, накопленное продуцентами) составляет 200 ккал/м^2, вторичная продуктивность (энергия, накопленная консументами первого порядка) равна 20 ккал/м^2 или 10% от предыдущего трофческого уровня, энергия же следующего уровня составляет 2 ккал/м^2, что равно 20% от энергии предыдущего уровня. Как видно из данного примера, при каждом переходе на более высокий уровень теряется 80-90% энергии предыдущего звена пищевой цепи. Подобные потери связаны с тем, что значительная часть энергии при переходе с одной ступени на другую не усваивается представителями следующего трофического уровня или превращается в тепло, недоступное для использования живыми организмами.

    Универсальная модель потока энергии.

    Поступление и расход энергии можно рассмотреть с помощью универсальной модели потока энергии . Она применима к любому живому компоненту экосистемы: растению, животному, микроорганизмам, популяции или трофической группе. Подобные графические модели, соединенные между собой, могут отражать пищевые цепи (при последовательном соединении схем потока энергии нескольких трофических уровней образуется схема потока энергии в пищевой цепи) или биоэнергетику в целом. Поступившая в биомассу энергия на схеме имеет обозначение I . Однако, часть поступившей энергии, не подвергается превращнию (на рисунке обозначена, как NU ). Например, это происходит в случае, когда часть света, проходящего через растения, не поглощается ими, или когда часть пищи, проходящей через пищеварительный тракт животного, не усваивается его организмом. Усвоенная (или ассимилированная ) энергия (обозначенная за A ) используется для различных целей. Она тратитися на дыхание (на схеме-R ) т.е. на поддержание жизнедеятельности биомассы и на продуцирование органического вещества (P ). Продукция, в свою очередь, принимате различные формы. Она выражается в энергетических затратах на рост биомассы (G ), в различных выделениях органического вещетсва во внешнюю среду (E ), в запасе энергии организмом (S ) (примером подобного запаса являются жировые накопления). Запасенная энергия образует на схеме так называемую рабочую петлю , так как данная часть продукции используется для обеспечения энергией в будущем (напимер, хищник использует свой запас энергии для поиска новых жертв). Оставшаяся часть продукции представляет собой биомассу (B ).

    Универсальную модель потока энергии можно интерпретировать двояко. Во-первых она может представлять популяцию какого-либо вида. В данном случае каналы потока энергии и связи рассматриваемого вида с другими видами представляют собой схему пищевой цепи. Другая интерпритация трактует модель потока энергии как изображение какого-либо энергетического уровня. Тогда прямоугольник биомассы и каналы потока энергии представляют все популяции, поддерживаемые одним и тем же источником энергии.

    Для того, чтобы наглядно показать различие подходов трактовки универсальной модели потока энергии можно рассмотреть пример с популяцией лис. Часть рациона лисиц составляет растительность (плоды и т.д.), другую же часть составляют травоядные животные. Чтобы подчеркнуть аспект внутрипопуляционной энергетики (первая интерпритация энергетической модели), всю популяцию лис следует изобразить в виде одного прямоугольника, если же нужно распределить метаболизм (метаболизм - обмен веществ, интенсивность обмена веществ) популяции лис на два трофических уровня, то есть отобразить соотношение ролей растительной и животной пищи в обмене веществ, необходимо построить два или несколько прямоугольников.

    Зная универвальную модель потока энергии, можно определить отношение величин энергетического потока в разных точках пищевой цепи.Выраженные в процентах, эти отношения называют экологической эффективностью . Существует несколько групп экологических эффективностей. Первая группа энергетических отношений: B/R и P/R . Доля энергии, расходущейся на дыхание, велика в популяциях крупных организмов. При стрессовом воздействии внешней среды R возрастает. Величина P значительна в активных популяциях мелких организмов (например водорослей), а также в системах, получающих энергию извне.

    Следующая группа отношений: A/I и P/A . Первое из них называется эффективностью ассимиляции (т.е. эффективностью использования поступившей энергии), второе - эффективностью роста тканей . Эффективность ассимиляции может варьироваться от 10 до 50% и выше. Она может либо достигать малой величины (при ассимиляции энергии света растениями), либо иметь большие значения (при ассимиляции энергии пищи животными). Обычно эффективность ассимиляции у животных зависит от их пищи. У растительноядных животных она достигает 80% при поедании семян, 60% при использовании в пищу молодой листвы, 30-40% - более старых листьев, 10-20% при питании древесиной. У хищных животных эффективность ассимиляции составляет 60-90%, так как животоная пища гораздо легче усваивается организмом, чем растительная.

    Эффективность роста тканей также широко варьируется. Наибольших значений она достигает в тех случаях, когда организмы имеют небольшие размеры и условия среды их обитания не требуют больших энергетических затрат на поддержание оптимальной для роста организмов температуры.

    Третья группа энергетических отношений: P/B . Если рассматривать P как скорость прироста продукции, P/B представляет собой отношение продукции в конкретный момент времени к биомассе. Если расчитывается продукция за определенный промежуток времени, значение отношения P/B определяется исходя из средней за этот промежуток времени биомассы. В данном случае P/B является безразмерной величиной и показывает, во сколько раз продукция больше или меньше биомассы.

    Следует отметить, что на энергетические характеристики экосистемы оказывает влияние размеры организмов, населяющих экосистему. Установлена зависимость между размером организма и его удельным метаболизмом (метаболизмом на 1г. биомассы). Чем мельче организм, тем выше его удельный метаболизм и, следовательно, тем меньше биомасса, которая может поддерживаться на данном трофическом уровне экосистемы. При одинаковом количестве использованной энергии организмы больших размеров накапливают большую биомассу, чем мелкие. Например, при равном значении потребленной энергии, биомасса, накопленная бактериями, будет гораздо ниже биомассы, накопленной крупными организмами (наприемр млекопитающими). Иная картина открывается при рассмотрении продуктивности. Так как продуктивность - это скорость прироста биомассы, то она больше у мелких жвотных, которые имеют более высокие темпы размножения и обновления биомассы.

    В связи с потерей энергии внутри пищевых цепей и зависимостью метаболизма от размера особей, каждое биологическое сообщество приобретает определеную трофическую структуру, которая может служить характеристикой экосистемы. Трофическая структура характеризуется или урожаем на корню, или количеством энергии, фиксируемой на единицу площади в единицу времени каждым последующим трофическим уровнем. Трофическую структуру можно изобразить графически в виде пирамид, основанием у которых служит первый трофический уровень (уровень продуцентов), а последующие трофические уровни образуют "этажи" пирамиды. Выделяют три типа экологических пирамид.

    1) Пирамида численности (на схеме обозначена цифрой 1) Она отображает количество отдельных организмов на каждом из трофических уровней. Численность особей на разных трофических уровнях зависит от двух основных факторов. Первый из них - более высокий уровень удельного метаболизма у мелких животных по сравнению с крупными, что позволяет им иметь численное превосходство над крупными видами и более высокие темпы размножения. Другой из вышеназванных факторов - существование у хищных животных верхнего и нижнего предела размера их жертв. Если жертва намного крупнее хищника по размерам, то он будет не в состоянии ее одолеть. Добыча же небольшого размера не сможет удовлетворить энергетических потребностей хищника. Поэтому для каждого хищного вида существует оптимальный размер жертв Однако, для данного правила существуют исключения (например, змеи с помощью яда убивают животных, превышающих их по размерам). Пирамиды чисел могут быть обращены "острием" вниз в том случае, если продуценты намного превосходят первичных консументов по своим размерам (примером может служить экосистема леса, где продуцентами являются деревья, а первичными консументами - насекомые).

    2) Пирамида биомассы (на схеме - 2). С ее помощью можно наглядно показать соотношения биомасс на каждом из трофических уровней. Она может быть прямой, если размер и срок жизни продуцентов достигает относительно больших величин (наземные и мелководные экосистемы), и обращенной, когда продуценты невелики по размеру и имеют короткий жизненный цикл (открытые и глубокие водоемы).

    3) Пирамида энергии (на схеме - 3). Отражает величину потока энергии и продуктивность на каждом из трофических уровней. В отличии от пирамид численности и биомассы, пирамида энергии не может быть обращенной, так как переход энергии пищи на вышестоящие трофические уровни происходит с большими энергопотерями. Следовательно, суммарная энергия каждого предыдущего трофического уровня не может быть выше энергии последующего. Вышеприведеное рассуждение основано на использовании второго закона термодинамики, поэтому пирамида энергии в экосистеме служит его наглядной иллюстрацией.

    Из всех названных выше трофических характеристик экосистемы только пирамида энергии дает наиболее полное представление об организации биологических сообществ. В пирамиде численности сильно преувеличена роль мелких организмов, а в пирамиде биомассы завышено значение крупных. В таком случае, данные критерии непригодны для сравнении функциональной роли популяции, сильно различающихся по значению отношения интенсивности метаболизма к размеру особей. По этой причине, именно поток энергии служит наиболее подходящим критерием для сравнения отдельных компонентов экосистемы между собой, а также для сравнения двух экосистем друг с другом.

    Знание основных законов превращения энергии в экосистеме способствуют лучшему пониманию процессов функционрования экосистемы. Это особенно важно в связи с тем, что вмешательство человека в ее естественую "работу" может привести экологическую систему к гибели. В связи с этим, он должен уметь заранее предсказывать результаты своей деятельности, и представление об энергетических потоках в экосистеме сможет обеспечить большую точность этих предсказаний.

    Включайся в дискуссию
    Читайте также
    Пьер и мари кюри открыли радий
    Сонник: к чему снится Утюг, видеть во сне Утюг что означает К чему снится утюг
    Как умер ахилл. Ахиллес и другие. Последние подвиги Ахиллеса